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Executive Summary 

In this deliverable, we had provided models and techniques for enacting the dynamic construction of 

coalitions of prosumers in VPP such that different type of services may be provided in an optimal manner by 

the VPP.  

We have started by analysing the existing literature approaches on VPP modelling and optimization 

identifying the main gaps that are to be filled by eDREAM: the lack in addressing different types of markets 

which usually translates in different optimization criteria multiple constraints and different time frames and 

the need for innovative optimization techniques which allow to address the complex optimization problems 

in a decentralized manner (Section 2).  

Thus, we had proposed a new VPP model which allows the formalization of dynamic construction of coalitions 

of prosumers in VPPs as a constraint satisfaction problem which can be tailored and adapted to different types 

services to be offered (Section 3). The VPP model considers three types of prosumers distributed energy 

generators, energy storage systems and flexible energy demand assets and allow the specification for each 

individual case of local operational constraints that need to be fulfilled while providing services as part of a 

VPP. At the same time, it allows defining constraints that are specific to the type of services the VPP will 

provide as well as of customized optimization goal following to maximize the profit of the VPP coalition and 

service delivery. Specifically, we had formalized as constraint satisfaction problem the dynamic construction 

of VPPs to trade energy in the day ahead and intraday, sell on short notice (one hour ahead) replacement 

capacity to a power plant which can’t meet its commitment, provide frequency regulation committing unused 

capacity and participate in direct demand response programs. 

In Section 4 we propose a hybrid optimization technique which combines the gradient-based solutions with 

nature-inspired heuristics for achieving fully distributed platform for creation of prosumers coalition and 

targeting to implement it over blockchain based distributed computing platforms. The optimization approach 

first applies a heuristic to determine a valid solution for integer variables, then it sets the integer values as 

constants in the objective function making it differentiable and finally applies a gradient-based method by 

iteratively improving the value of variable considering the derivative of the objective function with respect to 

them. 

Finally, Section 5 describes the design and technologies used to implement the eDREAM architectural 

component that deals with the dynamic coalitions of prosumers formation as well as the public REST API it 

exposes to other architectural components. Evaluation results are presented on different scenarios showing 

our approach feasibility in constructing coalitions for allowing VPP to meet specific levels of energy generation 

requests, optimal trading of energy and capacity bidding. The results show our hybrid optimization approach 

capability to improve the time overhead of solving the optimization problem at hand for many small 

prosumers the execution time increases linearly with the problem size. 
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1 Introduction 

1.1 Purpose 

This report provides an overview of the work carried out in the direction of defining models and optimization 

techniques aiming to create optimal coalitions of distributed energy prosumption sources targeting to provide 

services for DSO, participate in DR programs and participate as a whole in different types of markets such as 

the energy and capacity market. We have defined a generic VPP model of optimization technique on top 

which combines the gradient-based solutions with nature-inspired heuristics for achieving fully distributed 

platform for virtual generation of prosumers coalition and targeting to implement it over blockchain based 

distributed computing platforms. 

The work has been done in relation with eDREAM project Task 3.3 “Multi-energy Distributed Generation 

Modelling and Virtual Power Plants” part of Work Package 3 “Techniques for DR and Energy Flexibility 

Assessment”.  

1.2 Relation to other activities 

WP3 uses the outputs of WP2 in terms of requirements and use-cases and implements the main models and 

techniques that will provide the underlying base for developing the eDREAM envisioned next generation of 

demand response services both in a classical, centralized approach (WP4) but also in innovative decentralized 

blockchain based manner in WP5 (Figure 1). In particular, the VPP model and decentralized optimization 

techniques will consider the outputs of the energy production / consumption forecasting tool developed in 

Task 3.1 and will may be implemented on top of the blockchain based platform developed in WP5 benefiting 

on the advantaged brought by this technology.  

 

Figure 1. eDREAM pert diagram showing WP3 relations with other work packages  
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1.3 Structure of the document  

The remainder of the report is organized as follows: 

• Section 2 presents the most relevant literature approaches in the area of VPP modelling and 

optimization highlighting, in the end, the eDREAM progress beyond the identified state of the art; 

• Section 3 describes the eDREAM model for VPP and the optimization problem formalization for 

different types of services the VPP may provide as CSPs 

• Section 4 presents the gradient enhanced heuristic optimization solution which is used to solve the 

specific CSPs and have the potential to be decentralized and implemented on top of the blockchain 

platforms. 

• Section 5 presents the architectures, main data models and public APIs the eDREAM component 

implementing the VPP construction and optimization solution as well as evaluation results; 

• Section 6 concludes the deliverable and presents the future work to be addressed in next iterations. 
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2 Literature survey and eDREAM position  

Traditionally, the energy grid is constructed around centralized broadcast-like mono-directional energy 

systems, where electricity is remotely generated by power plants and transported over complex energy 

networks and infrastructures to the consumption points, with significant costs for interconnecting remote 

areas.  

Lately with the advent of intermittent decentralized renewable energy sources (RES) are completely changing 

the way in which the grids are managed to provide electricity to consumers, requiring advanced technology 

to preserve continuity and security of supply at affordable costs. Moreover, variations in energy production, 

either surplus or deficit, may threaten the security of supply, the lack of energy storage capabilities, leading 

to energy distribution systems overload and culminating with power outage or service disruptions. 

To avoid these issues, the concept of Virtual Power Plants had emerged. A VPP [1] combines and coordinates 

different types of energy production sources with energy storage systems and assets featuring controllable 

loads to handle the stochastic nature of renewable energy production, energy price, etc. In literature, the VPP 

are classified into two categories commercial VPP and technical VPP [2]. The commercial VPP is basing on the 

characteristics and forecasts of energy production and consumption of all distributed energy resources from 

its portfolio to places bids/offers in different markets to create optimal day ahead operational schedules, etc. 

On the other hand, the technical VPP considers the near real-time the local network constraints on the 

aggregated profile of energy sources to provide ancillary services [3], [4]. 

Researching the state-of-the-art literature, there are papers that are concentrating on VPP creation and 

optimal interaction with the smart energy grid. 

In [5] the VPP is optimally managed to minimize the operational cost considering the energy loss and energy 

price for the day ahead. The optimization problem is formalized as a constraint satisfaction problem which is 

solved using an Imperialist Competitive Algorithm under technical constraints. The proposed meta-heuristic 

optimization algorithm is used to determine optimal energy management of a VPP with renewable energy 

sources, such as wind turbine, photovoltaic, microturbine, fuel cell, energy storage and load control. In [4] 

the VPP day ahead and intraday optimal generation schedule is considered in relation with Demand Response 

programs. The stochastic parameters of the optimization problem are in this case forecasted wind energy 

production and energy price. The authors propose a profit based VPP scheduling model considering the 

Conditional Value-at-Risk [6] as a form of risk management in decision making which is effective in providing 

the needed feedback in relation with DR programs selection. The results are showing in described use-case 

over 30% improvement of VPP profit when participating in reserve and balance markets. A stochastic 

programming approach for optimal VPP participation in the day-ahead energy market and near real-time 

balancing market is proposed in [7]. The authors consider the uncertainty in energy price, generation and 

consumption of energy and model them as a form of conditional value-at-risk when placing bids and offers 

which will eventually affect the VPP profit. The VPP consider the renewable energy generation forecasted 

values from making day ahead energy bids/offers and if the generation surplus/consumption deficits are 

registered they are traded in the near real time market. The authors propose the use of cooperative game 

theory approaches to split and allocate VPP’s profit to the aggregated distributed energy resources. The 

authors of [8] investigate various trading strategies of a VPP in cooperation with neighbouring VPPs in respect 

to the wholesale electricity markets. Two risk management strategies are used to deal with market price 

uncertainty and its impact on profit variability: conditional value at risk and second-order stochastic 

dominance constraints. The optimization problem is modelled as a mixed-integer linear programming and 

used to assist VPP managers in making medium-term energy trading. The results show that the second-order 
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stochastic dominance constraints approach allow the VPP manager to impose his preferences on the resulting 

profit, while the conditional value at risk makes the optimization problem computationally more tractable 

and solvable in a reasonable time. A probabilistic model for optimal day ahead scheduling of electrical and 

thermal energy resources in a VPP in defined in [9] considering the participation energy and spinning reserve 

markets. The VPP’s scheduling problem considers the uncertainties in relation to the market price, energy 

demand and generation which are modelled using the Point Estimate Method. The results show that the VPP 

can compensate a plausible shortage of committed energy to the energy market due to existing uncertainties 

and may bid the specific amounts of reserve to the spinning reserve market. This could increase VPP’s profit 

and reduce its dependency on the upstream network. In [10] the problem of trading of VPP aggregated energy 

in day-ahead and the balancing markets to maximize the expected profit is modelled as a two-stage stochastic 

mixed-integer linear programming model. The uncertainty in renewable energy generation and energy price 

are modelled via scenarios based upon historical data. The results show that the proposed model can 

maximize the VPP short term profit while most of the energy trading decisions take place in the day-ahead 

market, while the balancing market makes less than 2% of the revenue. The model can be extended to 

consider the possibility that the VPP producer is able to influence market prices by upgrading the stochastic 

programming method by explicitly consider the market clearing process as in [11]. In a similar manner, the 

energy aggregators opportunities to manipulate the energy price in electricity markets is discussed in detail 

in [12]. The authors study the problem of estimating the profit an aggregator may obtain through and show 

that even if it is computational hard efficient algorithms exist when the topology of the network is acyclic. In 

[13] the authors analyse the aggregation of stochastic and deterministic Renewable Energy Sources in a VPP 

to reliable generate energy which can be traded in the European Power Exchange (EPEX)/European Energy 

Exchange (EEX) using existing market products. The optimal economic VPP configuration is analysed in 

correlation with the standard power market products highlighting the dependence on energy availability and 

the marginal costs of the VPP aggregated distributed energy sources.   

The VPP construction model is analysed in detail in [14] and the decision area variables are determined with 

the goal of establishing a unified and coordinated control of the distributed energy resources. Regional load 

density, power consumption levels, administrative ranks, economic levels and user importance are 

considered as criteria for determining the VPP decision area. The authors propose the use of the improved 

bat algorithm based on priority selection to obtain the construction scheme of VPP, which satisfies the multi-

objective programming criteria defined. The proposed solution does not consider the uncertainty of some 

distributed energy resources output. A novel VPP architecture which aim at aggregating distributed energy 

resources with the physical domain limited to single Points of Delivery of the distribution network is 

introduced in [15]. The optimization solution is based on agents representing individual energy resources 

which cooperate to implement the optimal management of the prosumer’s assets considering price and 

event-based DR schemes. The advantage brought by this approach is the level of decentralization the control 

being moved in the energy resources side. The optimization problem is modelled as a Mixed-Integer Linear 

Programming (MILP) problem aiming to solve the defined scheduling and DR constraints while minimizing the 

operational costs. In [16] critical review of literature approaches in relation to VPP and multi-energy systems 

and relationship among them is conducted. The authors advocate the potential role of agents and semantics 

in managing such distributed energy components. They propose the adoption of holonic energy systems as a 

new management paradigm targeting efficient decentralization through adaptive control topologies and 

demand responsive energy management while adding features such as local autonomy and global energy 

balance. The authors of [17][ identify VPP as a key instrument for distributed energy resources integration 

and propose an algorithm to optimize the day-ahead thermal and electrical scheduling of a large scale VPP. 

The algorithm can provide support in the implementation of strategies for the VPP daily profit maximization 

in the presence of hourly prices of fuel and electricity. The authors clearly identify the need of decision 
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support system for the VPP coordinators which need to consider huge amounts of data such as individual 

resource power production / consumption, size, efficiency, typology and remuneration. [18] consider VPP 

coalitions of wind generators and electric vehicles where the vehicles are modelled using software agents 

and used as energy storage devices. The remuneration for storage is provided as charging entitlements 

allowing the electric vehicles to take advantage of the energy price in the wholesale and retail. The authors 

propose a VPP operational optimization model based on linear programming allowing the VPP to increase its 

profit while paying the electrical vehicles.  

The authors of [19] had defined the arbitrage strategy for VPPs by participating in energy market and ancillary 

services market targeting the spinning reserve and reactive power services. The optimization model considers 

the supply–demand balancing, transmission network topology and security targeting the VPP's profit 

maximization. The model is translated into a mixed-integer non-linear optimisation problem with inter-

temporal constraints, the result being a single optimal bidding profile and a schedule for managing active and 

reactive power under participating in the markets. In [20] a two-stage stochastic programming approach is 

used to address the problem of VPP trading in a market of energy and ancillary services. It incorporates a risk-

averse optimal offering model based on conditional value-at-risk while considering the uncertainty about 

energy generation/consumption and energy prices in spinning reserve and balancing market. 

[21] address the problem of optimal coalition of heterogeneous distributed energy resources by a virtual 

power plant considering weekly bilateral contracting, futures-market involvement, and pool participation. 

The output is an optimal portfolio of available energy resources to provide a certain service. The selection is 

done in two stages: in the first stage based on long term considering futures-markets and bilateral contracts 

and in the second stage based on the most plausible realizations of the stochastic prices in the day-ahead 

market. In [22] a methodology for creating coalitions of distributed generation units based on game theory is 

proposed. It features a classification model of distributed energy resources considering fourteen parameters 

including technical, economic and behavioural ones. VPPs constructed in this way can participate in demand 

response programs at the level MV and LV distribution network. An optimal coalition formation mechanism 

of distributed energy sources using game theoretical perspective is described in [23]. A hierarchical coalition 

formation is proposed to achieve a state of cooperative equilibrium among the distributed energy sources 

while providing the best possible response to the DSO requests. The authors show that their proposed 

scheme provides optimal outcomes and it is scalable enough to participate in real-time operation.  

Analysing the state of the art is can be seen that there are few approaches addressing the problem of dynamic 

construction of coalitions of energy resources to provide an aggregated energy generation for trading or for 

providing services for other players such as the DSO (see the spider web chart from Figure 2). At the same 

time, only few approaches consider in the VPP optimization problem from the perspective of different types 

of markets which usually translates in different optimization criteria multiple constraints and different time 

frames. eDREAM progress the state of the art by providing and generic VPP optimization model which allows 

the definition, formalization and provisioning of different types of energy or ancillary services. Also, there are 

state of the art approaches which address jointly the problem of uncertainty in energy generation and 

consumption and VPP optimization but only from a centralized perspective using stochastic programming 

approaches. eDREAM will provide on top of the model an optimization technique which innovatively 

combines gradient-based solution with nature-inspired heuristics having the potential to address the VPP 

optimization problem in a des centralized manner which may be implemented over the blockchain. When it 

comes to decentralization there is no state-of-the-art approach to model the optimization problems in a 

decentralized fashion up to the level of individual energy resources.         
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Figure 2. VPP analysis of the state of the art and eDREAM positioning 
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3 VPP model and optimization problem formalization 

Our aim is to provide the underlying model to create dynamic coalitions, which aggregate distributed energy 

prosumers of various types in VPPs:   

• Distributed Energy Generators (DEG) such as small-scale wind power plants, photovoltaic units, CHP 

systems, diesel generators, etc.  

• Energy Storage Systems (EES), such as batteries, UPS 

• Flexible Energy Demand Assets (FDA). 

The goal is to manage them optimally to address the variable generation and uncertainty at the micro-grid 

level by providing different type of services to the DSO while optimizing the profit of VPP participants (See 

Figure 3).  

 

Figure 3. VPP model considered 

We have considered that the VPP may operate in different type of markets, such as the wholesale electricity 

market, balancing market and the ancillary services market targeting the delivery of different types of services 

(see Table 1):  

In the wholesale electricity market, a VPP may buy energy when the prices are low and charge energy storage 

systems. When the prices are high the VPP will sell the energy surplus and at the same time can adjust the 

demand of controllable, flexible assets and discharge power from the energy storage systems. In this sense, 

it will act an intermediary between the DER and energy market allowing the participation of small scale DER 

that are not qualified to participate on their own.  

In the balancing market, the VPP can sell on short notice (one hour ahead) replacement capacity to a power 

plant which can’t meet its commitment. Also, it may offer to either increase or decrease generation (or 

consumption) during a certain time period.  
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In the ancillary services market may provide short term services such as frequency regulation committing 

unused capacity such as the diesel generators. 

Table 1. VPP optimization targeted services 

Service Name Description Market Type Time 

Trade Energy VPP is created to sell extra energy production on the 

market when the prices are high or to buy energy 

when the prices are low and store it in ESS.  

Energy Market Day Ahead or 

Intraday 

Capacity Bidding 

/ Selling  

In case a power plant cannot meet its commitment 

and needs to purchase replacement capacity a 

dynamically created VPP may offer it.  

Balancing Market One Hour Ahead 

Reactive power 

compensation  

Frequency regulation. Unused capacity which can be 

activated to modify the reactive power. DEGs of 

specific type can be used to offer frequency balancing 

by injecting inductive reactive power in the grid. 

Ancillary Services Near Real Time 

VPP demand 

response   

Group energy prosumers to offer a demanded energy 

supply amount over a time window also considering 

the potential flexibility of FDAs. 

Direct for the DSO / fixed remuneration  

 

We model a distributed energy prosumer as a triple consisting of the predicted energy profiles over a future 

time interval 𝑇 in which the VPP is constructed, and the prosumer type (𝐷𝐸𝐺, 𝐸𝐸𝑆, 𝐹𝐷𝐴):  

𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟[𝑘] = (𝐸𝐾[𝑇], {𝐷𝐸𝐺, 𝐸𝐸𝑆, 𝐹𝐷𝐴}) 

The energy profile of the prosumer is represented as a set of energy values sampled at equidistant time 

stamps during the time interval 𝑇 over which the VPP coalition will provide a specific service. 

𝐸𝑘(𝑇) = {𝐸𝐾(𝑖)|𝑖 ∈ {0. . 𝑇}, 𝑘 ∈ {1. . 𝑁}} 

We consider that in the local grid there are a number 𝑁 of distributed energy prosumers of different types 

and scales (energy profiles) each having their specific local constraints which need the be met.  

𝑁 = 𝐶 + 𝑃 + 𝑆 

where 𝐶 is the number of flexible energy assets, 𝑃 is the number of energy producers and 𝑆 is the number of 

energy storage devices.  

The goal of the optimal coalition of prosumers construction process is to select a subset of the energy 

prosumers from local grid available portfolio which fulfils best the optimization objectives defined for the 

type of energy service that is targeted to be delivered by the VPP, while meeting each energy prosumer local 

constraints. 

We represent the generated coalition as a binary array of length 𝑁, where 0 value on position 𝑘 means that 

prosumer 𝑘 is not part of the coalition while 1 means that the prosumer is taken into the coalition.  

𝑉𝑃𝑃 = {(𝑡𝑎𝑘𝑒𝑛𝑘, 𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟[𝑘])|𝑘 ∈ {1. . 𝑁}, 𝑡𝑎𝑘𝑒𝑛𝑘 ∈ {0,1}}       

 𝑡𝑎𝑘𝑒𝑛𝑘 = {
0, 𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟[𝑘] 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑉𝑃𝑃 

1, 𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟[𝑘] 𝑖𝑠 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑉𝑃𝑃
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The search space of the optimization problem is 2𝑁, the set of all subsets that can be formed with elements 

of a set of cardinality 𝑁, making the search problem NP-complete. Thus, we define the VPP coalition 

formation for specific services as a CSP which will be solved using the gradient enhanced heuristic 

optimization solution defined in Section 4. 

For the Distributed Energy Generators, we consider the following parameters and local constraints in 

operation:  

• 𝐸𝐾 – the forecasted energy generation values; 

• 𝑈𝐿  and 𝑈𝐻 – the lower and upper levels of uncertainty considered in the forecasting process; 

• 𝐸𝑀𝐴𝑋
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

 – the maximum energy generation; 

The lower and upper limit of uncertainty give the lower and upper bounds of the energy predictions 

considering potential prediction errors reported to the actual value that will be monitored in the future: 

𝑈𝐿 ∗ 𝐸𝐾(𝑖) ≤ 𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦(𝑖) ≤ 𝑈𝐻 ∗ 𝐸𝐾(𝑖) ≤  𝐸𝑀𝐴𝑋

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
, ∀𝑖 ∈ {0. . 𝑇} 

The total energy generated by the producers selected in a VPP can be computed as the sum of each individual 

prosumer energy generation: 

𝐸𝑉𝑃𝑃
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

(𝑡) = ∑ 𝑡𝑎𝑘𝑒𝑛(𝑘) ∗ 𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦(𝑡)

𝑃

𝑘=1

 

Furthermore, the coalition is created considering the risk management in the optimization decision making 

generated by the uncertainty in the energy generation forecasting processes. This is computed as the 

weighted difference (𝜌) between the forecasted value of the prosumer energy profile 𝐸𝐾  and the actual 

values during delivery and represents a cost in optimization problem. When the difference is high, the 

probability of not meeting the forecasted energy values increases, thus increasing the risk of not being able 

to supply the energy desired directly impacting the value of profit estimated: 

𝑟𝑖𝑠𝑘𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 = 𝜌 ∗∑∑|𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦(𝑡) − 𝐸𝐾(𝑡)|

𝑇

𝑡=1

𝑁

𝑘=1

 

For the Energy Storage Sources, the following parameters and local constraints in operation have been 

considered: 

• Maximum capacity: 𝑀𝐴𝑋𝐾
𝐿𝑜𝑎𝑑[𝑘𝑊ℎ], 𝑘 ∈ {1. . 𝑆} 

• Depth of Discharge: 𝐷𝑜𝐷𝑘, 𝑘 ∈ {1. . 𝑆} 

• Initial state: 𝐸𝑆𝑆𝑘
𝑖𝑛𝑖𝑡[𝑘𝑊ℎ] , 𝑘 ∈ {1. . 𝑆} 

• Maximum Charge Rate on time interval: 𝑀𝐴𝑋𝐾
𝐶ℎ𝑎𝑟𝑔𝑒

[𝑘𝑊ℎ], 𝑘 ∈ {1. . 𝑆} 

• Maximum Discharge Rate on time interval: 𝑀𝐴𝑋𝐾
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

[𝑘𝑊ℎ], 𝑘 ∈ {1. . 𝑆} 

• Actual Charging Rate on a time interval: 𝐶𝐸𝑆𝑆
𝑘 [𝑘𝑊ℎ], 𝑘 ∈ {1. . 𝑆} 

• Actual Discharging Rate on a time interval: 𝐷𝐸𝑆𝑆
𝑘 [𝑘𝑊ℎ], 𝑘 ∈ {1. . 𝑆} 

• Actual Loaded Capacity: 𝐸𝑆𝑆𝑘[𝑘𝑊ℎ], 𝑘 ∈ {1. . 𝑆} 

• Charge loss factor: 𝜑𝐶 ∈ [0,1] 

• Discharge loss factor: 𝜑𝐷 ∈ [0,1] 
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• Discharge Cost per unit: 𝐶𝑂𝑆𝑇𝑘
𝐷[

€

[𝑘𝑊ℎ]
] , 𝑘 ∈ {1. . 𝑆} 

• Charge Cost per unit: 𝐶𝑂𝑆𝑇𝑘
𝐶[

€

[𝑘𝑊ℎ]
] , 𝑘 ∈ {1. . 𝑆} 

The constraints resulting from these parameters state the battery actual loaded capacity must be bounded 

by the maximum capacity and by the depth of discharge (𝐷𝑜𝐷𝐾). Furthermore, the charge and discharges also 

must be bounded.  

𝐷𝑜𝐷𝐾 ∗ 𝑀𝐴𝑋𝐾
𝐿𝑜𝑎𝑑 ≤ 𝐸𝑆𝑆𝑘(𝑡) ≤ 𝑀𝐴𝑋𝐾

𝐿𝑜𝑎𝑑  𝑘 ∈ {1. . 𝑆}, 𝑡 ∈ {1. . 𝑇} 

0 ≤ 𝐶𝐸𝑆𝑆(𝑡) ≤ 𝑀𝐴𝑋𝐾
𝐶ℎ𝑎𝑟𝑔𝑒

, 𝑘 ∈ {1. . 𝑆}, 𝑡 ∈ {1. . 𝑇} 

0 ≤ 𝐷𝐸𝑆𝑆(𝑡) ≤ 𝑀𝐴𝑋𝐾
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

, 𝑘 ∈ {1. . 𝑆}, 𝑡 ∈ {1. . 𝑇} 

𝐸𝑆𝑆𝑘(0) = 𝐸𝑆𝑆𝐾
𝑖𝑛𝑖𝑡, ∀𝑘 ∈ {1. . 𝑆}, 𝑡 ∈ {1. . 𝑇} 

When the battery is discharged over a time interval with 𝐷𝐸𝑆𝑆
𝑘  kWh, its actual loaded capacity decreases with 

(𝜑𝐷 + 1) ∗ 𝐷𝐸𝑆𝑆
𝑘 , due to the discharge losses. Furthermore, when a battery is charged, the actual loaded 

capacity increases with (1 − 𝜑𝐶) ∗ 𝐶𝐸𝑆𝑆
𝑘 , due to the charging losses. A battery cannot be charged and 

discharged simultaneously. 

𝐸𝑆𝑆𝑘(𝑡) = 𝐸𝑆𝑆𝑘(𝑡 − 1) + (1 − 𝜑𝐶) ∗ 𝐶𝐸𝑆𝑆
𝑘 (𝑡) − (𝜑𝐷 + 1) ∗ 𝐷𝐸𝑆𝑆

𝑘 (𝑡), 𝑘 ∈ {1. . 𝑆}, 𝑡 ∈ {1. . 𝑇} 

𝐶𝐸𝑆𝑆
𝑘 (𝑡) ∗ 𝐷𝐸𝑆𝑆

𝑘 (𝑡) = 0, 𝑘 ∈ {1. . 𝑆}, 𝑡 ∈ {1. . 𝑇} 

We consider that the charge and discharge of a battery are increasing its operating costs due to wear and 

decrease the overall VPP profit. The operating cost of the battery over a time interval [0. . 𝑇] is computed as 

the negative cost due to battery charge and discharge: 

𝑂𝑃𝑐𝑜𝑠𝑡(𝐶𝐸𝑆𝑆
𝑘 , 𝐷𝐸𝑆𝑆

𝑘 , 𝑝𝑟𝑖𝑐𝑒) = ∑ ((1 − 𝜑𝐶) ∗ 𝐶𝐸𝑆𝑆
𝑘 (𝑡) ∗ 𝐶𝑂𝑆𝑇𝑘

𝐶 +𝑇
𝑡=1 (𝜑𝐷 + 1) ∗ 𝐷𝐸𝑆𝑆

𝑘 (𝑡) ∗ 𝐶𝑂𝑆𝑇𝑘
𝐷))  

The overall energy charged and discharged by the batteries over a time interval can be computed as the sum 

of the energy charged or discharged by each individual battery from the grid:  

𝐶𝐸𝑆𝑆(𝑡) = ∑ 𝐶𝐸𝑆𝑆
𝑘𝑆

𝑘=1 (𝑡);     𝐷𝐸𝑆𝑆(𝑡) = ∑ 𝐷𝐸𝑆𝑆
𝑘 (𝑡)𝑆

𝑘=1  

The overall cost of charging and discharging the batteries over the optimization interval [0. . 𝑇] is computed 

as the sum of the costs for each battery usage.  

𝑂𝑃𝑐𝑜𝑠𝑡(𝐶𝐸𝑆𝑆, 𝐷𝐸𝑆𝑆, 𝑝𝑟𝑖𝑐𝑒) = ∑ 𝑂𝑃𝑐𝑜𝑠𝑡(𝐶𝐸𝑆𝑆
𝑘 , 𝐷𝐸𝑆𝑆

𝑘 , 𝑝𝑟𝑖𝑐𝑒)𝑆
𝑘=1   

The reward of operating the batteries selected in a VPP by selling and buying energy from the energy 

marketplace considering the energy price is defined as: 

𝑅𝐸𝑆𝑆(𝐶𝐸𝑆𝑆, 𝐷𝐸𝑆𝑆, 𝑝𝑟𝑖𝑐𝑒) = (∑ (𝐷𝐸𝑆𝑆(𝑡) − 𝐶𝐸𝑆𝑆(𝑡))
𝑇
𝑡=1 ∗ 𝑝𝑟𝑖𝑐𝑒(𝑡)) − 𝑂𝑃𝑐𝑜𝑠𝑡(𝐶𝐸𝑆𝑆, 𝐷𝐸𝑆𝑆, 𝑝𝑟𝑖𝑐𝑒)  

For the Flexible Energy Demand Assets, the following parameters and local constraints in operation have 

been considered: 

• 𝐸𝐾
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒– the baseline energy consumption of the flexible asset; 

• 𝐴𝑃𝐶𝐵𝑒𝑙𝑜𝑤
𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦

 – the lower bound of average energy consumption defined as the values of the actual 

energy measured that are below the baseline; 
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• 𝐴𝑃𝐶𝐴𝑏𝑜𝑣𝑒
𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦

 – the upper bound of the average energy consumption defined as the actual energy 

measured that are below the baseline; 

• 𝐸𝑀𝐴𝑋
𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦

 – the maximum energy consumption of the flexible asset 

The constraints defined for the flexible assets state that each one of them may provide a certain amount of 

flexibility either for increasing or decreasing their energy profile which is bounded by their adaptability power 

curve parameters (above or below):  

0 ≤ 𝐴𝑃𝐶𝑏𝑒𝑙𝑜𝑤
𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒

≤ 𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦(𝑡) ≤ 𝐴𝑃𝐶𝑎𝑏𝑜𝑣𝑒

𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒
≤ 𝐸𝑀𝐴𝑋

𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦
 

The total energy flexibility that can be potentially elicitated by the selected prosumers in a VPP is defined as 

the sum of the energy profiles of the selected prosumers. 

𝐸𝑉𝑃𝑃
𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑡) = ∑ 𝑡𝑎𝑘𝑒𝑛(𝑘) ∗ 𝐸𝐾

𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦

𝐶

𝑘=1

 

Each different generation type exposes the coalition to various risks due to weather conditions, thus diversity 

of generation being an important feature of the coalition. Thus, we define a risk measure to increase the 

diversity of the types of the prosumers selected in a coalition. We consider the total number of different 

prosumer types as 𝑉𝑃𝑃𝑇𝑦𝑝𝑒𝑠, while the number of selected prosumers in a solution is denoted as 𝑉𝑃𝑃𝑠𝑖𝑧𝑒 =

∑ 𝑡𝑎𝑘𝑒𝑛𝑘
𝑁
𝑘=1 . If each prosumer would be evenly distributed, it should be 

𝑉𝑃𝑃𝑠𝑖𝑧𝑒

𝑉𝑃𝑃𝑇𝑦𝑝𝑒𝑠
 from each different type. 

So, we define the diversity measure as the Euclidean distance between the number for each selected different 

prosumers’ type and the mean 
𝑉𝑃𝑃𝑠𝑖𝑧𝑒

𝑉𝑃𝑃𝑇𝑦𝑝𝑒𝑠
. 

𝑟𝑖𝑠𝑘𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 𝜎 ∗ √∑ (
𝑉𝑃𝑃𝑠𝑖𝑧𝑒

𝑉𝑃𝑃𝑇𝑦𝑝𝑒𝑠
− ∑ 𝑡𝑎𝑘𝑒𝑛(𝑘) ∗ (𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟𝐾 . 𝑡𝑦𝑝𝑒 == 𝑝))

𝑁
𝑘=1

2𝑉𝑃𝑃𝑇𝑦𝑝𝑒𝑠
𝑝=1   

3.1 VPP energy trading  

In this case the goal is to create an optimal coalition of prosumers to be able to trade aggregated energy 

generation and considering the energy price signals (i.e.  to sell energy when the price is high or to buy energy 

when the price is low and store it in batteries). 

We had formalized the optimization problem as a CSP (see Figure 4), having as inputs the set of energy 

prosumers available to participate in the VPP (i.e. available portfolio), the minimum bound of the energy 

traded on the market (Mintrade) and the energy price 𝑃𝑟𝑖𝑐𝑒[𝑇] over the time interval 𝑇 in which the coalition 

will be constructed. 

The output of the optimization problem will be the subset of prosumers that optimal met the optimization 

objective while also fulfilling their individual operational constraints defined in above.  

The profit obtained by trading the energy on the marketplace considering the energy price for each hour is 

computed as a sum between the revenue of the trading process and the revenue in operating the batteries 

while subtracting the cost associated with energy generation, forecasting process uncertainty and generation 

type diversity:  

𝑉𝑃𝑃𝑝𝑟𝑜𝑓𝑖𝑡
𝑡𝑟𝑎𝑑𝑖𝑛𝑔

(𝑡) =∑𝐸𝑉𝑃𝑃
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) ∗ 𝑝𝑟𝑖𝑐𝑒(𝑡)

𝑇

𝑡=1

+ 𝑅𝐸𝑆𝑆(𝐶𝐸𝑆𝑆, 𝐷𝐸𝑆𝑆, 𝑝𝑟𝑖𝑐𝑒) 

                                                                                                    −(𝑟𝑖𝑠𝑘𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 + 𝑟𝑖𝑠𝑘𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 + 𝐺𝑒𝑛𝐶𝑜𝑠𝑡) 
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The objective function defined aims to maximize the profit obtained by the coalition, by choosing the best 

prosumers to participate: 

max𝑉𝑃𝑃𝑝𝑟𝑜𝑓𝑖𝑡
𝑡𝑟𝑎𝑑𝑖𝑛𝑔

 

𝑰𝒏𝒑𝒖𝒕𝒔: 𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟[𝑁], 𝑃𝑟𝑖𝑐𝑒[𝑇],Mintrade 

𝑶𝒖𝒕𝒑𝒖𝒕𝒔: 𝑉𝑃𝑃 –  𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑝𝑟𝑜𝑠𝑢𝑚𝑒𝑟𝑠 𝑤ℎ𝑖𝑐ℎ 𝑚𝑒𝑡 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒  

Determine  

     𝑉𝑃𝑃 = {(𝑡𝑎𝑘𝑒𝑛𝑘𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟[𝑘])|𝑘 ∈ {1. . 𝑁}, 𝑡𝑎𝑘𝑒𝑛𝑘 ∈ {0,1}} 

 Such that  

     max𝑉𝑃𝑃𝑝𝑟𝑜𝑓𝑖𝑡
𝑡𝑟𝑎𝑑𝑖𝑛𝑔

 

Considering the constraints expressed as equalities: 

     C1: 𝐸𝑡𝑟𝑎𝑑𝑒𝑑(𝑡) = 𝐸𝑉𝑃𝑃(𝑡) − 𝐶𝐸𝑆𝑆(𝑡) + 𝐷𝐸𝑆𝑆(𝑡) 

     C2: 𝐶𝐸𝑆𝑆(𝑡) = ∑ 𝐶𝐸𝑆𝑆
𝑘𝑆

𝑘=1 (𝑡) 

     C3: 𝐷𝐸𝑆𝑆(𝑡) = ∑ 𝐷𝐸𝑆𝑆
𝑘 (𝑡)𝑆

𝑘=1  

     C4: 𝐸𝑉𝑃𝑃(𝑡) = ∑ 𝑡𝑎𝑘𝑒𝑛𝑘 ∗ 𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦

(𝑡)𝑁
𝑘=1 , ∀𝑡 ∈ {1. . 𝑇} 

     C5: 𝑟𝑖𝑠𝑘𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 = 𝜌 ∗ ∑ ∑ |𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦

− 𝐸𝐾(𝑡)|
𝑇
𝑡=1

𝑁
𝑘=1 , ∀𝑡 ∈ {1. . 𝑇}, 𝑘 ∈ {1. . 𝑁} 

     C6: 𝑉𝑃𝑃𝑠𝑖𝑧𝑒 = ∑ 𝑡𝑎𝑘𝑒𝑛𝑘
𝑁
𝑘=1  

     C7: 𝑟𝑖𝑠𝑘𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 𝜎 ∗ √∑ (
𝑉𝑃𝑃𝑠𝑖𝑧𝑒

𝑉𝑃𝑃𝑇𝑦𝑝𝑒𝑠
−∑ 𝑡𝑎𝑘𝑒𝑛(𝑘) ∗ (𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟𝐾 . 𝑡𝑦𝑝𝑒 == 𝑝))𝑁

𝑘=1

2𝑉𝑃𝑃𝑇𝑦𝑝𝑒𝑠
𝑝=1  

     C8: 𝐶𝐸𝑆𝑆
𝑘 (𝑡) ∗ 𝐷𝐸𝑆𝑆

𝑘 (𝑡) = 0 

     C9: 𝐸𝑆𝑆𝑘(𝑡) = 𝐸𝑆𝑆𝑘(𝑡 − 1) + (1 − 𝜑𝐶) ∗ 𝐶𝐸𝑆𝑆
𝑘 (𝑡) − (𝜑𝐷 + 1) ∗ 𝐷𝐸𝑆𝑆

𝑘 (𝑡) 

     C10: 𝑂𝑃𝑐𝑜𝑠𝑡(𝐶𝐸𝑆𝑆
𝑘 , 𝐷𝐸𝑆𝑆

𝑘 , 𝑝𝑟𝑖𝑐𝑒) = ∑ ((1 − 𝜑𝐶) ∗ 𝐶𝐸𝑆𝑆
𝑘 (𝑡) ∗ 𝐶𝑂𝑆𝑇𝑘

𝐶 +𝑇
𝑡=1 (𝜑𝐷 + 1) ∗ 𝐷𝐸𝑆𝑆

𝑘 (𝑡) ∗ 𝐶𝑂𝑆𝑇𝑘
𝐷)) 

     C11: 𝑂𝑃𝑐𝑜𝑠𝑡(𝐶𝐸𝑆𝑆, 𝐷𝐸𝑆𝑆 , 𝑝𝑟𝑖𝑐𝑒) = ∑ 𝑂𝑃𝑐𝑜𝑠𝑡(𝐶𝐸𝑆𝑆
𝑘 , 𝐷𝐸𝑆𝑆

𝑘 , 𝑝𝑟𝑖𝑐𝑒)𝑆
𝑘=1  

     C12:𝑅𝐸𝑆𝑆(𝐶𝐸𝑆𝑆, 𝐷𝐸𝑆𝑆, 𝑝𝑟𝑖𝑐𝑒) = (∑ (𝐷𝐸𝑆𝑆(𝑡) − 𝐶𝐸𝑆𝑆(𝑡))
𝑇
𝑡=1 ∗ 𝑝𝑟𝑖𝑐𝑒(𝑡)) − 𝑂𝑃𝑐𝑜𝑠𝑡(𝐶𝐸𝑆𝑆, 𝐷𝐸𝑆𝑆 , 𝑝𝑟𝑖𝑐𝑒) 

Considering the constraints expressed as inequalities (variable bounds): 

     C13: 𝐷𝑜𝐷𝐾 ∗ 𝑀𝐴𝑋𝐾
𝐿𝑜𝑎𝑑 ≤ 𝐸𝑆𝑆𝑘(𝑡) ≤ 𝑀𝐴𝑋𝐾

𝐿𝑜𝑎𝑑  𝑘 ∈ {1. . 𝑆}, 𝑡 ∈ {1. . 𝑇} 

     C14: 0 ≤ 𝐶𝐸𝑆𝑆(𝑡) ≤ 𝑀𝐴𝑋𝐾
𝐶ℎ𝑎𝑟𝑔𝑒

, 𝑘 ∈ {1. . 𝑆}, 𝑡 ∈ {1. . 𝑇} 

     C15: 0 ≤ 𝐷𝐸𝑆𝑆(𝑡) ≤ 𝑀𝐴𝑋𝐾
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

, 𝑘 ∈ {1. . 𝑆}, 𝑡 ∈ {1. . 𝑇} 

     C16: 𝐸𝑆𝑆𝑘(0) = 𝐸𝑆𝑆𝐾
𝑖𝑛𝑖𝑡 , ∀𝑘 ∈ {1. . 𝑆}, 𝑡 ∈ {1. . 𝑇} 

     C17: 𝐸𝑡𝑟𝑎𝑑𝑒𝑑(𝑡) ≥ 𝑀𝑖𝑛𝑡𝑟𝑎𝑑𝑒 , 𝑡 ∈ {1. . 𝑇} 

    C18: 𝑈𝐿 ∗ 𝐸𝐾(𝑖) ≤ 𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦(𝑖) ≤ 𝑈𝐻 ∗ 𝐸𝐾(𝑖) ≤  𝐸𝑀𝐴𝑋

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

Figure 4. Optimal VPP construction for trading energy modelled as CSP 

3.2 Capacity bidding service 

The capacity bidding service aims at determining the optimal set of prosumers that create a coalition able to 

deliver a fixed energy 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑀𝑊ℎ] over the time interval [0. . 𝑇].  The inputs of the optimziation problem 
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defined in Figure 5 are the predicted energy profiles of the prosumers within the local grid, the capacity 

needed to be delivered and the associated compensation, while the output of the optimization problem is 

the VPP coalition created.  

The optimization problem objective is twofold and aims to aggregate the target capacity from available 

prosumers while maximizing the VPP profit: 

𝑚𝑖𝑛(√∑(𝐸𝑉𝑃𝑃(𝑡) − 𝑇𝑎𝑟𝑔𝑒𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)
2

𝑇

𝑡=1

) 

max𝑉𝑃𝑃𝑝𝑟𝑜𝑓𝑖𝑡
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

= 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 ∗∑𝐸𝑉𝑃𝑃(𝑡)

𝑇

𝑡=1

 

                                                                                                            −(𝑟𝑖𝑠𝑘𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 + 𝑟𝑖𝑠𝑘𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 + 𝐺𝑒𝑛𝐶𝑜𝑠𝑡) 

𝑰𝒏𝒑𝒖𝒕𝒔: 𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟[𝑁], 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

𝑶𝒖𝒕𝒑𝒖𝒕𝒔: 𝑉𝑃𝑃 − 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑝𝑟𝑜𝑠𝑢𝑚𝑒𝑟𝑠 𝑤ℎ𝑖𝑐ℎ 𝑚𝑒𝑡 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 

Determine  

      𝑉𝑃𝑃 = {𝑡𝑎𝑘𝑒𝑛𝑘|𝑘 ∈ {1. . 𝑁}, 𝑡𝑎𝑘𝑒𝑛𝑘 ∈ {0,1}} 

Such that  

     𝑚𝑖𝑛((√∑ (𝐸𝑉𝑃𝑃(𝑡) − 𝑇𝑎𝑟𝑔𝑒𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)
2𝑇

𝑡=1 ) and max 𝑉𝑃𝑃𝑝𝑟𝑜𝑓𝑖𝑡
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

 

Considering the constraints expressed as equalities: 

     C1: 𝐸𝑉𝑃𝑃(𝑡) = ∑ 𝑡𝑎𝑘𝑒𝑛𝑘 ∗ 𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦

(𝑡)𝑁
𝑘=1 , ∀𝑡 ∈ {1. . 𝑇} 

     C2: 𝑟𝑖𝑠𝑘𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 = ∑ ∑ |𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦(𝑡) − 𝐸𝐾(𝑡)|

𝑇
𝑡=1

𝑁
𝑘=1 , ∀𝑡 ∈ {1. . 𝑇}, 𝑘 ∈ {1. . 𝑁} 

     C3: 𝑉𝑃𝑃𝑠𝑖𝑧𝑒 = ∑ 𝑡𝑎𝑘𝑒𝑛𝑘
𝑁
𝑘=1  

     C4: 𝑟𝑖𝑠𝑘𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = √∑ (
𝑉𝑃𝑃𝑠𝑖𝑧𝑒

𝑉𝑃𝑃𝑇𝑦𝑝𝑒𝑠
−∑ 𝑡𝑎𝑘𝑒𝑛𝐾 ∗ (𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟𝐾 . 𝑡𝑦𝑝𝑒 == 𝑝))𝑁

𝑘=1

2𝑉𝑃𝑃𝑇𝑦𝑝𝑒𝑠
𝑝=1  

Considering the constraints expressed as inequalities (variable bounds): 

   C5: 𝑈𝐿 ∗ 𝐸𝐾(𝑖) ≤ 𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦(𝑖) ≤ 𝑈𝐻 ∗ 𝐸𝐾(𝑖) ≤  𝐸𝑀𝐴𝑋

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

Figure 5. Optimal VPP construction for capacity bidding modelled as CSP 

3.3 VPP demand response  

In this case of participation in demand response programs the DSO sends a demanded energy profile that has 

to be followed by the coalition formed by the VPP over a future time interval 𝑇 and the associated reward 

< {𝐸𝑑𝑒𝑚𝑎𝑛𝑑(𝑡)|𝑡 ∈ 𝑇, 𝑅𝑒𝑤𝑎𝑟𝑑 > 

The optimization problem (see Error! Reference source not found.) defined aims at selecting a subset of the e

nergy prosumers that grouped together form a coalition able to fulfil the DSO demand while minimizing the 

risk due to the uncertainty of the predictions and also involving a diversity of type of energy generated (wind, 

photovoltaic, geothermal, etc.). Furthermore, because the coalition is also based on flexible assets, that can 
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modify their demand either by increasing or decreasing it the overall reward must exceed the potential costs 

due to flexibility adaptation (e.g. use energy generation to compensate an increased energy demand in the 

local grid). 

min √∑((𝐸𝑉𝑃𝑃
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) + 𝐸𝑉𝑃𝑃

𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦
) − 𝐷𝑆𝑂𝐷𝑒𝑚𝑎𝑛𝑑(𝑡))

2
𝑇

𝑡=1

 

max𝑉𝑃𝑃𝑝𝑟𝑜𝑓𝑖𝑡
𝐷𝑅 = ((∑ ∑ |𝐸𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛

𝑘 (𝑡) − 𝐸𝐾
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑡)|𝑇

𝑡=1
𝑁
𝑘=1 ∗ 𝑝𝑟𝑖𝑐𝑒(𝑡)) − 𝐷𝑆𝑂𝑅𝑒𝑤𝑎𝑟𝑑)  

                                                                                                             −(𝑟𝑖𝑠𝑘𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 + 𝑟𝑖𝑠𝑘𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 + 𝐺𝑒𝑛𝐶𝑜𝑠𝑡) 

𝑰𝒏𝒑𝒖𝒕𝒔: 𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟[𝑁], 𝐸𝑑𝑒𝑚𝑎𝑛𝑑(𝑡), 𝑅𝑒𝑤𝑎𝑟𝑑, 𝑇 

𝑶𝒖𝒕𝒑𝒖𝒕𝒔: 𝑉𝑃𝑃 −  𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑝𝑟𝑜𝑠𝑢𝑚𝑒𝑟𝑠 𝑤ℎ𝑖𝑐ℎ 𝑚𝑒𝑡 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 

Determine  

     𝑉𝑃𝑃 = {(𝑡𝑎𝑘𝑒𝑛𝑘𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟[𝑘])|𝑘 ∈ {1. . 𝑁}, 𝑡𝑎𝑘𝑒𝑛𝑘 ∈ {0,1}} 

Such that  

      

     min (√∑ ((𝐸𝑉𝑃𝑃
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) + 𝐸𝑉𝑃𝑃

𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦
) − 𝐷𝑆𝑂𝐷𝑒𝑚𝑎𝑛𝑑(𝑡))

2
𝑇
𝑡=1  and max𝑉𝑃𝑃𝑝𝑟𝑜𝑓𝑖𝑡

𝐷𝑅  

Considering the constraints expressed as equalities: 

     C1: 𝐸𝑉𝑃𝑃
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

(𝑡) = ∑ 𝑡𝑎𝑘𝑒𝑛(𝑘) ∗ 𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦(𝑡), ∀𝑡 ∈ {1. . 𝑇}𝑃

𝑘=1  

     C2: 𝐸𝑉𝑃𝑃
𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑡) = ∑ 𝑡𝑎𝑘𝑒𝑛(𝑘) ∗ 𝐸𝐾

𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦𝐶
𝑘=1 , ∀𝑡 ∈ {1. . 𝑇} 

     C3: 𝑟𝑖𝑠𝑘𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 = ∑ ∑ |𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦(𝑡) − 𝐸𝐾(𝑡)|

𝑇
𝑡=1

𝑁
𝑘=1 , ∀𝑡 ∈ {1. . 𝑇}, 𝑘 ∈ {1. . 𝑁} 

     C4: 𝑉𝑃𝑃𝑠𝑖𝑧𝑒 = ∑ 𝑡𝑎𝑘𝑒𝑛𝑘
𝑁
𝑘=1  

     C5: 𝑟𝑖𝑠𝑘𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = √∑ (
𝑉𝑃𝑃𝑠𝑖𝑧𝑒

𝑉𝑃𝑃𝑇𝑦𝑝𝑒𝑠
−∑ 𝑡𝑎𝑘𝑒𝑛𝐾 ∗ (𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟𝐾 . 𝑡𝑦𝑝𝑒 == 𝑝))𝑁

𝑘=1

2𝑉𝑃𝑃𝑇𝑦𝑝𝑒𝑠
𝑝=1  

Considering the constraints expressed as inequalities (variable bounds): 

     C6: 𝑈𝐿 ∗ 𝐸𝐾(𝑖) ≤ 𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦(𝑖) ≤ 𝑈𝐻 ∗ 𝐸𝐾(𝑖) ≤  𝐸𝑀𝐴𝑋

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

     C7: 0 ≤ 𝐴𝑃𝐶𝑏𝑒𝑙𝑜𝑤
𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒

≤ 𝐸𝐾
𝑢𝑛𝑐𝑒𝑟𝑛𝑡𝑎𝑖𝑛𝑡𝑦(𝑡) ≤ 𝐴𝑃𝐶𝑎𝑏𝑜𝑣𝑒

𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒
≤ 𝐸𝑀𝐴𝑋

𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

Figure 6. DR service optimization problem 

3.4 Reactive power compensation service 

We propose the dynamic creation of prosumer coalitions around a point in the local grid where an imbalance 

of reactive power is identified such that the new VPP can address in an optimal manner the reactive power 

fluctuation locally and stabilize the grid voltage. 

To create this kind of coalitions we have extended the prosumer model to incorporate both active and reactive 

power components which are correlated though the prosumer power factor 𝑃𝐹. The power factor is defined 

as the ratio between the active and apparent power, and it is a value between 0 and 1. The closer to 1 the 

power factor is, the circuit has less reactive power. 

𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟[𝑘] = (𝐸𝐾
𝑎𝑐𝑡𝑖𝑣𝑒[𝑇], 𝐸𝐾

𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒[𝑇], 𝑃𝐹𝑇𝑌𝑃𝐸 , {𝐷𝐸𝐺, 𝐸𝐸𝑆, 𝐹𝐷𝐴}) 
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The loads in the Smart Grid can have either a lagging power factor, or a leading power factor: 

𝑃𝐹𝑇𝑌𝑃𝐸 = {𝑙𝑎𝑔𝑔𝑖𝑛𝑔, 𝑙𝑒𝑎𝑑𝑖𝑛𝑔} 

A load that “supplies” reactive power is a capacitive load with a leading power factor, while a load that 

“consumes” reactive power is an inductive load with a lagging power factor. A leading power factor implies 

that the reactive component of the power, is negative because reactive power is supplied to the circuit and 

the phase angle in this case is in the fourth quadrant. Furthermore, a lagging power factor means that the 

reactive component of the power, is positive because reactive power is consumed from the circuit, and the 

phase angle in this case is in the first quadrant. 

Furthermore, if the resource has a constant power factor, then the bounds are given as equal. Using the 

general active and reactive power formulas as well as the power factor type (leading or lagging) of a resource, 

the active –reactive energy relationship is the following: 

𝐸𝐾
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) =

{
 
 

 
 
−𝐸𝐾

𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) ∗ √(
1

𝑃𝐹𝐾
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔2

− 1) , 𝑖𝑓 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑃𝐹

𝐸𝐾
𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) ∗ √(

1

𝑃𝐹𝐾
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔2

− 1) , 𝑖𝑓 𝑙𝑎𝑔𝑔𝑖𝑛𝑔 𝑃𝐹

     

The actual operating power factor  𝑃𝐹𝐾
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

 of the prosumer 𝑘 is limited by the power factor limits: 

𝑃𝐹𝐾
𝑙𝑒𝑎𝑑𝑖𝑛𝑔−𝑀𝐼𝑁

≤ 𝑃𝐹𝐾
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

≤ 𝑃𝐹𝐾
𝑙𝑒𝑎𝑑𝑖𝑛𝑔−𝑀𝐴𝑋

 

𝑃𝐹𝐾
𝑙𝑎𝑔𝑔𝑖𝑛𝑔−𝑀𝐼𝑁

≤ 𝑃𝐹𝐾
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

≤ 𝑃𝐹𝐾
𝑙𝑎𝑔𝑔𝑖𝑛𝑔−𝑀𝐴𝑋

 

The reactive energy in the local grid sums up, and the consumed reactive energy of inductive elements 

(lagging) cancels the supplied reactive energy of the capacitive elements (leading): 

𝐸𝑔𝑟𝑖𝑑
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) = ∑ 𝐸𝐾

𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒(𝑡)𝑁
𝑘=1   

The active energy of the grid can be computed as the sum of the active energy produced, and its absolute 

values should be equal to the active energy consumed by the grid, to stabilize the frequency. 

𝐸𝑔𝑟𝑖𝑑
𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) = ∑ |𝐸𝐾

𝑎𝑐𝑡𝑖𝑣𝑒−𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡)|𝑁
𝑘=1 = ∑ |𝐸𝐾

𝑎𝑐𝑡𝑖𝑣𝑒−𝑑𝑒𝑚𝑎𝑛𝑑(𝑡)𝑁
𝑘=1 | 

The power factor over the grid can be computed as the ratio between the reactive energy from the grid and 

the apparent energy in the grid, and it should be kept constant, at around 0.95.  

𝑃𝐹𝑔𝑟𝑖𝑑 =
𝐸𝑔𝑟𝑖𝑑
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

𝐸𝑔𝑟𝑖𝑑
𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 =

𝐸𝑔𝑟𝑖𝑑
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

√(𝐸𝑔𝑟𝑖𝑑
𝑎𝑐𝑡𝑖𝑣𝑒)2+(𝐸𝑔𝑟𝑖𝑑

𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒)2  
  

The optimization problem is defined in Figure 7, and has as inputs the set of distributed energy prosumers 

available to be considered in the VPP coalition and the target 𝑃𝐹 that must be achieved at local grid level. 

The solution of the optimization problem is a subset of energy producers located close to the imbalance point 

that can compensate the reactive energy.  
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The optimization objective aims at minimizing the distance between the actual power factor and the target 

power factor, as well as minimizing the distance between the grid elements that compensate the imbalance 

and the imbalance point: 

min(√∑ (𝑃𝐹𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) − 𝑃𝐹𝑔𝑟𝑖𝑑(𝑡))
2

𝑇
𝑡=1 )   

 

At the same time the VPP should gain profit by delivering this specific service:  

max𝑉𝑃𝑃𝑝𝑟𝑜𝑓𝑖𝑡
𝑃𝐹 = 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑒𝑤𝑎𝑟𝑑 − 𝐺𝑒𝑛𝑐𝑜𝑠𝑡 

𝑰𝒏𝒑𝒖𝒕𝒔: 𝑃𝑟𝑜𝑠𝑢𝑚𝑒𝑟𝑠 [𝑁], 𝑃𝐹𝑡𝑎𝑟𝑔𝑒𝑡[𝑇] 

𝑶𝒖𝒕𝒑𝒖𝒕𝒔: 𝑉𝑃𝑃 –  𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑝𝑟𝑜𝑠𝑢𝑚𝑒𝑟𝑠 𝑤ℎ𝑖𝑐ℎ 𝑚𝑒𝑡 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒  

Determine  

      𝑃𝐹𝐾
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

, 𝑉𝑃𝑃 = {𝑡𝑎𝑘𝑒𝑛𝑘|𝑘 ∈ {1. . 𝑁}, 𝑡𝑎𝑘𝑒𝑛𝑘 ∈ {0,1}} 

Such that  

      min (√∑ (𝑃𝐹𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) − 𝑃𝐹𝑔𝑟𝑖𝑑(𝑡))
2

𝑇
𝑡=1 )  and max𝑉𝑃𝑃𝑝𝑟𝑜𝑓𝑖𝑡

𝑃𝐹  

Considering the constraints expressed as equalities: 

      C1: 𝐸𝑔𝑟𝑖𝑑
𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) = ∑ |(𝑡𝑎𝑘𝑒𝑛𝑘 ∨ 𝑎𝑐𝑡𝑖𝑣𝑒𝑘) ∗ 𝐸𝐾

𝑎𝑐𝑡𝑖𝑣𝑒−𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡)|𝑁
𝑘=1 = 

                                                                                                                    = ∑ |(𝑡𝑎𝑘𝑒𝑛𝑘 ∨ 𝑎𝑐𝑡𝑖𝑣𝑒𝑘) ∗ 𝐸𝐾
𝑎𝑐𝑡𝑖𝑣𝑒−𝑑𝑒𝑚𝑎𝑛𝑑(𝑡)𝑁

𝑘=1 |  

      C2: 𝐸𝑔𝑟𝑖𝑑
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) = ∑ (𝑡𝑎𝑘𝑒𝑛𝑘 ∨ 𝑎𝑐𝑡𝑖𝑣𝑒𝑘) ∗ 𝐸𝐾

𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒(𝑡)𝑁
𝑘=1  

       C3: 𝐸𝐾
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) =

{
 
 

 
 
−𝐸𝐾

𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) ∗ √(
1

𝑃𝐹𝐾
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔2

− 1) , 𝑖𝑓 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑃𝐹

𝐸𝐾
𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) ∗ √(

1

𝑃𝐹𝐾
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔2

− 1) , 𝑖𝑓 𝑙𝑎𝑔𝑔𝑖𝑛𝑔 𝑃𝐹

 

Considering the constraints expressed as inequalities: 

       C4: 𝑃𝐹𝐾
𝑙𝑒𝑎𝑑𝑖𝑛𝑔−𝑀𝐼𝑁

≤ 𝑃𝐹𝐾
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔(𝑡) ≤ 𝑃𝐹𝐾

𝑙𝑒𝑎𝑑𝑖𝑛𝑔−𝑀𝐴𝑋
 ∀𝑡 ∈ {1. . 𝑇}, 𝑘 ∈ {1. . 𝑁} 

       C5: 𝑃𝐹𝐾
𝑙𝑎𝑔𝑔𝑖𝑛𝑔−𝑀𝐼𝑁

≤ 𝑃𝐹𝐾
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

(𝑡) ≤ 𝑃𝐹𝐾
𝑙𝑎𝑔𝑔𝑖𝑛𝑔−𝑀𝐴𝑋

∀𝑡 ∈ {1. . 𝑇}, 𝑘 ∈ {1. . 𝑁} 

Figure 7. Optimal VPP construction for offering spinning reserve modelled as CSP 
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4 Gradient enhanced heuristic optimization technique  

As we have presented above all the prosumers coalitions in VPP optimization problems are modelled as CSP 

being classified as NP-complete. In all of them (see Figure 8) we aim at minimizing an objective function 𝑓 

having 𝑛 real arguments and 𝑚 integer arguments while fulfilling a set of 𝑘 constraints of the form 𝑐𝑖(𝑥, 𝑦) ≤

𝑑, knowing that each real and integer variable argument is bounded by a set of lower and upper limits. 

Determine 𝑥 ∈ 𝑅𝑛 , 𝑦 ∈  𝑍𝑚 

     𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑓(𝑥, 𝑦)), 𝑓: 𝑅𝑛 × 𝑍𝑚  

Such that 

      Constraints: 𝑐𝑖(𝑥, 𝑦) ≤ 𝑑, 𝑖 ∈ {1. . 𝐾}, 𝑑 ∈ 𝑅 

      Variable Bounds: 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝐻  

                                         𝑦𝐿 ≤ 𝑦 ≤ 𝑦𝐻 

       Variable Types: 𝑥 ∈ 𝑋 ⊆ 𝑅𝑛 

                                       𝑦 ∈ 𝑌 ⊆ 𝑍𝑚  

Figure 8. Optimization problem definition in a general manner 

The optimization problem defined in Figure 8 is NP-complete, thus exact solutions are hard to find. Most 

state-of-the-art solvers leverage on approximation algorithms and heuristics to solve the problem. Basically, 

simpler problems, that have either only continuous (Nonlinear Programs – NLP) or just integer variables 

(Integer Linear Programming – ILP) are easier to solve. Classical solutions are based either on gradient-based 

optimization for NLP problems, using algorithms derived from gradient descent [29], while integer 

programming with bounded variables is tackled by various heuristics [30].  

Table 2. Problem complexity considering variable types 

𝒙 𝒚 f-differentiable Problem Class Algorithms 

𝑥 ∈ 𝑋 ⊆ 𝑅𝑛 𝑦 ∈ ∅ 𝑦𝑒𝑠 NLP Gradient-based 

𝑥 ∈ ∅ 𝑦 ∈ 𝑌 ⊆ 𝑍𝑚  𝑛𝑜 ILP Heuristic-based 

𝑥 ∈ 𝑋 ⊆ 𝑅𝑛∅ 𝑦 ∈ 𝑌 ⊆ 𝑍𝑚  𝑛𝑜 MINLP Hybrid Approach 

 

The complexity of the mathematical problem that must be solved is strictly correlated to the variable types, 

as shown in Table 2. On the one hand, if the problem contains only continuous variables and the function 𝑓 

is differentiable, then gradient-based algorithms, such as the ADAM algorithm [24], can be used to compute 

an approximate solution. On the other hand, if the problem contains only integer variables, the 𝑓 function is 

not differentiable, but heuristics can be applied to determine a solution by performing a search in the space 

of all feasible integer solutions bounded by the variable bounds 𝑦𝐿 , 𝑦𝐻. The most complex case appears when 

the objective function 𝑓 has both integer and continuous variables, because gradient-based methods cannot 

be directly applied while search heuristics in continuous space do not give good results.  

We propose a hybrid approach that uses a heuristic to compute the integer variable values, fixes them as 

constants, making the 𝑓 function differentiable, thus gradient-based methods being suitable to compute an 

approximate solution. The advantage of our approach is given by the potential to parallelize and decentralize 

the optimization problem computations to enhance the performance and decrease the time overhead. In 

case of a network of nodes capable of performing the computations (i.e. processing nodes located at each 

prosumer), the population of the algorithm can be split between the nodes, each of them running the 
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gradient-based algorithm and then evolving its local individuals. At each round, the nodes communicate to 

exchange their local population, and each of them performs a ranking and a selection of the best individuals, 

generates a new population and distributes the best individuals to be ranked by the other nodes. Then, the 

population is split again between the processing nodes, and the gradient search is performed locally again to 

increase the computation speed.  

Furthermore, to assure the immutability of the computation, the algorithm can be implemented over the 

blockchain distributed ledger. Even though the optimization problem is NP-complete, thus requiring a lot of 

processing power to solve, the verification and ranking of a solution can be done in polynomial time, thus by 

any node from the blockchain network, even if it has low processing power. To integrate the proposed 

algorithm with a distributed ledger, we will investigate in the next deliverable iterations two directions:  

• The first direction involves having several peers with high processing power from the blockchain 

network running the algorithm as external services integrated with the blockchain using oracles. 

When a new coalition must be formed, these nodes compute one or several solutions, and the 

network chooses the best one and agrees upon it using consensus algorithms.  

• The second direction involves building a consensus algorithm based on solving the optimization 

problem which is NP-hard. This involves proving that the optimization algorithm solving difficulty can 

be dynamically adjusted according to the number of miners from the network. We propose solving 

this issue by varying the population and the number of iterations of both the heuristic and the 

gradient solver.  

The main steps of our hybrid optimization algorithm (see Figure 9) are the following: 

• Apply a heuristic to determine a valid solution for the integer variables 𝑦; 

• Set the integer values of 𝑦 as constants in the function 𝑓. Now the function can be differentiated with 

respect to 𝑥; 

• Apply a gradient-based method by iteratively improving the value of 𝑥 considering the derivative of 

𝑓 with respect to 𝑥 (∇𝑥𝑓). 

 
Figure 9. Hybrid optimization steps 

However, this approach encounters issues due to the set of constraint functions 𝑐𝑖 that must be verified by 

the values of the variables which minimize the objective function 𝑓. Thus, we define a new augmented 

objective function that will be minimized by the hybrid algorithms.  

𝑓𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 𝑅
𝑛 × 𝑍𝑚, 𝑓𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑥, 𝑦) =< 𝑓𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑥, 𝑦), 𝑓𝑏𝑎𝑟𝑟𝑖𝑒𝑟(𝑥, 𝑦)) > 
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The new objective function features two components: 

• The first component is the number of constraints that are not met by a solution, computed as the 

sum of the cardinality of the set containing the indexes of the 𝑐 constraint functions that do not meet 

the constraints (𝐶𝑉) and the number of variable bounds that are out of limit 

𝐶𝑉 = {𝑖|(𝑐𝑖(𝑥, 𝑦) > 𝑑}| 

𝐶𝑋 = {𝑖|𝑥
𝑖 < 𝑥𝐿

𝑖  ∨ 𝑥𝐻
𝑖 < 𝑥𝑖 , 𝑖 ∈ {1. . 𝑛}} 

𝐶𝑌 = {𝑖|𝑦
𝑖 < 𝑦𝐿

𝑖  ∨ 𝑦𝐻
𝑖 < 𝑦𝑖, 𝑖 ∈ {1. .𝑚} 

𝑓𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡: 𝑅
𝑛 × 𝑍𝑚, 𝑓𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑥, 𝑦) = |𝐶𝑉| + |𝐶𝑋| + |𝐶𝑌| 

• The second component augments the function 𝑓 with a set of barrier functions that consider the 

constraints from the set 𝐶𝑉 which are not met. This is necessary in the cases when the constraints 

are not fulfilled due to their continuous component which is not modified by the heuristic based 

algorithm, and the gradient-based algorithm computes the same local optima which will not fulfil the 

constraints.  

𝑓𝑏𝑎𝑟𝑟𝑖𝑒𝑟: 𝑅
𝑛 × 𝑍𝑚, 𝑓𝑏𝑎𝑟𝑟𝑖𝑒𝑟(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝜇∑𝑔𝑖(𝑥)

𝐾

𝑖=1

 

Because the barrier function is applied only after the heuristic computes a solution for the integer 

components 𝑦, the functions 𝑔𝑖 composing the barrier function have as argument only the continuous 

variables 𝑥. We define a function 𝑔𝑖 for each constraint 𝑐𝑖 which returns 0 if the constraint 𝑐𝑖 is satisfied, 

otherwise the logarithm from the difference between the bound 𝑑 of the constraint and the constraint value. 

To avoid having the argument of the logarithm in the interval [0,1], where the value of the logarithm is 

negative, thus leading to a decrease of the objective function even is the constraint 𝑐𝑖 is not satisified, we add 

a 1 to the argument, thus constructing the term log(𝑐𝑖(𝑥, 𝑦) − 𝑑 + 1). 

𝑔𝑖: 𝑅
𝑛 → 𝑅, 𝑔𝑖 = {

0, 𝑖𝑓 𝑐𝑖(𝑥, 𝑦) ≤ 𝑑

log(𝑐𝑖(𝑥, 𝑦) − 𝑑 + 1) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The heuristic is a population-based search where multiple solutions are generated and evaluated based on 

the objective function. Two solutions are compared using the following comparator: 

𝑓𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑥1, 𝑦1) ≤ 𝑓𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑥2, 𝑦2)   

↔ {
 𝑓𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑥1, 𝑦1) ≤ 𝑓𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑥2, 𝑦2)

𝑂𝑅
 𝑓𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑥1, 𝑦1) = 𝑓𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑥2, 𝑦2) 𝐴𝑁𝐷 𝑓𝑏𝑎𝑟𝑟𝑖𝑒𝑟(𝑥1, 𝑦1) ≤ 𝑓𝑏𝑎𝑟𝑟𝑖𝑒𝑟(𝑥2, 𝑦2)

 

The proposed hybrid algorithm with generic heuristics and gradient algorithm is presented in Figure 10. The 

algorithm has as input a description of the optimization problem depicted in Figure 8, and as output a solution 

denoted as 𝑠𝑜𝑙 =< 𝑥𝑏𝑒𝑠𝑡 , 𝑦𝑏𝑒𝑠𝑡 >. The algorithm starts by generating a random initial population of 

candidate solutions, with random values for both 𝑥 and 𝑦 components within their bounds (line 1). Then, 

several iterations are performed, as shown in lines (2-9). Each iteration of the algorithm goes through the 

population and computes the 𝑥 component using a gradient-based algorithm that computes the derivative 

∇𝑥𝑓𝑏𝑎𝑟𝑟𝑖𝑒𝑟  of the 𝑓𝑏𝑎𝑟𝑟𝑖𝑒𝑟 functions with respect to 𝑥, after setting the values of the 𝑦 variables as  
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𝑦𝑠𝑜𝑙  computed by the heuristic (lines 3-5). Then, specific heuristic steps are applied, such as population 

rankings, selection and generation of new population (lines 6-8). 

Input: Mathematical Optimization Problem Defined in Figure 8 

Output:  𝑠𝑜𝑙𝑏𝑒𝑠𝑡 =< 𝑥𝑏𝑒𝑠𝑡 , 𝑦𝑏𝑒𝑠𝑡 > 

Begin 

1. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = generate an initial population of candidate solutions 

2. for (number of iterations) 

3.     𝑓𝑜𝑟𝑒𝑎𝑐ℎ(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 =< 𝑥, 𝑦𝑠𝑜𝑙 > from population) 

4.           𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑥𝑠𝑜𝑙  𝑢𝑠𝑖𝑛𝑔 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛( 𝑓𝑏𝑎𝑟𝑟𝑖𝑒𝑟(𝑥, 𝑦𝑠𝑜𝑙)) 

5.     end 𝑓𝑜𝑟𝑒𝑎𝑐ℎ 

6.    𝑟𝑎𝑛𝑘(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

7.    𝑠𝑒𝑙𝑒𝑐𝑡(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

8.    𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑛𝑒𝑤( 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

9. 𝑒𝑛𝑑 𝑓𝑜𝑟 

End 

Figure 10. Hybrid algorithm for mathematical optimization 

As shown in the algorithm from Figure 10, the input is represented by an optimization problem instance 

having the form depicted in Figure 8. The main components of the problem are: 

• the objective function 𝑓: 𝑅𝑛 × 𝑍𝑚 that needs to be minimized; 

• a set of k constraints 𝑐𝑖, in the form of expressions with expected results; 

• a set of variable bounds for both the integer and the continuous variables. 

Considering that the objective function and some constraints have the format of mathematical expressions which 

need to be evaluated or differentiated eventually, simply saving those expression as an array of characters is not 

enough. The chosen data structure is a binary expression tree, being a usual approach for representing 

mathematical expressions. 

Table 3. Programming models used for representing mathematical formalisms in our approach 

Mathematical Formalisms Programming Models 

Expressions: 𝑓(𝑥, 𝑦), 𝑐𝑖(𝑥, 𝑦) Binary expression trees 

Constraints: 

 𝑐𝑖(𝑥, 𝑦) ≤ 𝑑, 𝑖 ∈ {1. . 𝐾}, 𝑑 ∈ 𝑅 

 

Constraints in the form of mathematical expressions will be represented by 

pairs (𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 𝑜𝑝𝑒𝑟𝑎𝑛𝑑, 𝑣𝑎𝑙𝑢𝑒), so that the value of the expression 

resulted by replacing the variables with given (𝑥, 𝑦) values meets the operand 

applied to the given value. The operand can be equal, less than equal or 

greater than equal.  

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝐻 

𝑦𝐿 ≤ 𝑦 ≤ 𝑦𝐻 

For constraints in the form of variable bounds, they will be represented by pairs 

(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒,𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒,𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑇𝑦𝑝𝑒), where integerType is 

boolean variable which specifies if the variable is an integer or not. 

𝑥 ∈ 𝑋 ⊆ 𝑅𝑛 

𝑦 ∈ 𝑌 ⊆ 𝑍𝑚  

Variables will be saved in a data structure in the form of a dispersion table, 

where the key will be represented by the variable and the value will be 

represented by the value of a variable at a certain time. 

 

The binary expression tree can model two types of expressions: algebraic or logic. Furthermore, the 

expressions can contain unary operators (other functions – a trigonometric function as an example) or binary 
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operators (addition, subtraction, multiplication, etc.). In an expression tree, the internal nodes are 

represented by operators and the leaves by numeric values or variables. The evaluation of expression trees is 

done recursively, starting from the root, and applying the operands from the internal nodes to the leaves.  

 
Figure 11 The construction of an expression tree  

The procedure for constructing a binary expression tree is divided in two phases, and is depicted in Figure 11: 

• transforming a mathematical expression from an infix form to a postfix form, which is done by 

applying the Shunting-yard method [27]  

• transforming the resulting postfix form into a binary expression tree [28]. 

To compute the derivative of an expression tree, with respect to a variable, instead of computing the value 

of a node, we will apply the derivative, with respect to the type of node we wish to differentiate. We use the 

following notations: 

• 𝐶 is a constant value; 

• 𝑆 and 𝑇 are two mathematical expressions; 

• 𝑋 is the variable with respect to which we differentiate; 

• 𝑉 is a variable different from 𝑋. 

The rules of differentiation are presented in Table 4. The simplification of an expression tree is done during 

the process of differentiation, following which elementary nodes 0 and 1 can appear. Those are neutral 

elements in the operations used for this application, considering this, they can be simplified to avoid 

unnecessary computations and to increase performance.  

Table 4. Differentiation rules 

Rule Expressions 

Rule 1: The derivative of a constant or a variable different from 

the one with respect to which we differentiate is 0 

𝑑𝑖𝑓𝑓(𝐶) = 0 

𝑑𝑖𝑓𝑓(𝑉) = 0 

Rule 2: The derivative of the variable X with respect to X is 1 𝑑𝑖𝑓𝑓(𝑋) = 1 

Rule 3: The derivative of the sum of S and T  𝑑𝑖𝑓𝑓(𝑆 + 𝑇) = 𝑑𝑖𝑓𝑓(𝑆) + 𝑑𝑖𝑓𝑓(𝑇) 
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Rule 4: The derivative of the difference of S and T  𝑑𝑖𝑓𝑓(𝑆–𝑇) = 𝑑𝑖𝑓𝑓(𝑆) − 𝑑𝑖𝑓𝑓(𝑇) 

Rule 5: The derivative of the product of S and T  𝑑𝑖𝑓𝑓(𝑆 ∗ 𝑇) = 𝑆 ∗ 𝑑𝑖𝑓𝑓(𝑇) + 𝑇 ∗ 𝑑𝑖𝑓𝑓(𝑆) 

Rule 6: The derivative of the division of S and T  
𝑑𝑖𝑓𝑓(𝑆 𝑇⁄ ) =

𝑇 ∗ 𝑑𝑖𝑓𝑓(𝑆) − 𝑆 ∗ 𝑑𝑖𝑓𝑓(𝑇)

𝑇2
 

Rule 7: The derivative of S raised to the power of T  𝑑𝑖𝑓𝑓(𝑆𝑇) = 𝑇 ∗ 𝑆𝑇−1 ∗ 𝑑𝑖𝑓𝑓(𝑆) 

 

For the integer variables in the optimization problem the heuristic algorithm used was genetic algorithm. The 

algorithm evolves a set of individuals encoding the solution of the 𝑦 ∈ 𝑌 ⊆ 𝑍𝑚 integer variables that 

minimize the function 𝑓(𝑥, 𝑦). The population of the algorithm is defined as a set of P individuals. 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = {𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1, … 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑃} 

Each individual has a set of variables that provides a solution for the problem. Each variable is modelled as a 

chromosome, which in this case represents an integer variable. The chromosome, besides the value of the 

variable, contains the identifier of the variable, so that it may be correctly replaced in the solution (Figure 

12). 

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖 = {𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒1, …𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑚}, 𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑗 =< 𝑦𝑗 . 𝑛𝑎𝑚𝑒, 𝑦𝑗 . 𝑣𝑎𝑙𝑢𝑒 > 

 

Figure 12. Mapping the integer variables Y from binary expression trees to chromosomes 

The number of individuals should vary between one hundred and up to tens of thousands, depending on the 

complexity of the problem. In our solution, we have implemented three different types of initialization (see 

Table 5). 

Table 5. Population initialization techniques 

Type Description 

Fixed initialization Each chromosome is initialized with a fixed value that is fixed in the code. 

Random initialization Each chromosome is initialized with a random value from a uniform 

distribution. 

Given initialization Each chromosome is initialized with a value from a given initial solution. This is 

also called a “warm start”. 

 

After an initial solution is provided, each individual must be evaluated and ranked. The evaluation process 
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consists of replacing in the evaluation tree the identifiers from the chromosomes with the value associated 

with them, and then evaluating the tree. Based on the value obtained by the evaluation, each individual can 

be ranked. The ranking is done based on the 𝑓𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑥, 𝑦) =< 𝑓𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑥, 𝑦), 𝑓𝑏𝑎𝑟𝑟𝑖𝑒𝑟(𝑥, 𝑦)) > and the 

corresponding comparator defined on its two components. 

After the individuals have been ranked, we can try and improve them by modifying them. The change in the 

set of individuals is provided by two mechanisms: 

• Mutation – is the process where the chromosomes of an individual are modified to a different value. 

The mutation can change the value to a random one or add a small random value to the existing 

solution, to keep it in the same search space (Figure 13). 

• Crossover – is the process where a set of the chromosomes of two individuals are interchanged. This 

results in two new individuals, one having the first part of chromosomes from the first individual, 

and the second part from the second individual, and the other having the first part from the second 

individual, and the second part from the first individual (Figure 14). 

 

Figure 13. Mutation operation 

Both these operations may provide a better or worse solution. Another proposed technique is generation of 

new individuals in each iteration, each individual generated having random chromosomes. This technique 

brings some variety to the population and it helps the algorithm to avoid local optima. 

 

Figure 14. Crossover operation. 

To preserve the best individuals, we also replicate the top 10% of individuals, and keep them untouched, not 

allowing mutation or crossover to happen. This allows us to both keep the current best solutions and tries 

and improve them with mutation or crossover to achieve a better solution. 

After the existing population has been modified, we need to evaluate, rank and select the best individuals 

again. This cycle continues until the specified number of iterations is reached, or until no significant change 

is noticed in many iterations. 

For the continuous variables of the optimization problem, a gradient-based algorithm was used. It uses the 

derivative with respect to 𝑥 of the 𝑓(𝑥, 𝑦𝑠𝑜𝑙) function, where the integer variables that created discontinuities 
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are replaced with fixed values determined by the genetic algorithm and considered constants each time the 

gradient algorithm is run. 

Several gradient-based algorithms are used. To begin with, a stochastic gradient descent algorithm that relies 

on the derivative of the objective function is implemented. Based on the derivative, it will choose values in 

the neighbourhood of the current point where the function decreases. The recurrent formula is: 

𝑥𝑛−1 = xn − 𝛾𝛻𝑓𝑏𝑎𝑟𝑟𝑖𝑒𝑟(xn, 𝑦𝑠𝑜𝑙) 

where γ is a constant specifying the step, like a learning rate; the bigger the constant, the faster it will reach 

and area close to the optimum, but it will overshoot and bounce around, never reaching the optimum value; 

the smaller the constant, the slower it will reach the optimum, but it will not miss it. The 𝑓𝑏𝑎𝑟𝑟𝑖𝑒𝑟 function is 

defined at the beginning of Section 4 as an augmented version of the function 𝑓(𝑥, 𝑦). 

A newer algorithm based on gradient descent, with better results is ADAM (adapted from adaptive moment 

estimation). It combines the advantages of two other algorithms based on stochastic gradient descent: 

AdaGrad [24] – an algorithm that works well for sparse gradients and RMSProp [25] – an algorithm that works 

well in non-stationary settings 
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5 Prototype implementation and evaluation  

In this section, we will provide an implementation overview in regard to the eDREAM component that is 

dealing with the optimal construction coalitions of prosumers in VPPs targeting the delivery of specific 

services defined in Section 3. Figure 15 below shows a high-level design of the component showing the main 

technologies used for implementation. 

 

Figure 15. Hybrid optimization steps 

The component has / uses the following modules: 

• REST API and Database Layers– the role of this layer is to provide a unified REST API for components 

(including this one) to access the eDREAM distributed database. It is also used to validate and filter 

the incoming requests, providing an additional layer of security. This component contains: 

◦ Entity Module – contains OOP models mapped on the database structure 

◦ Data Layer Module – used for data access with predefined or custom queries 

◦ Service Module – used for data validation for the request or response of the layer 

• VPP Constraints Satisfaction Problems – this module allows for describing and formalizing the 

creation of optimal coalitions of prosumer as a CSP using the model we have described in Section 3. 

At the same time, it offers the possibility to define and improve optimization problem goals tailoring 

them to existing or new services that need to be considered. 
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• Optimization Data Models – the module implements all the data models needed by our hybrid 

gradient enhanced heuristics optimization technique, such as the binary expression tree. It also 

implements the main mathematical operations needed in optimization such as functions derivation. 

• Hybrid Optimization Algorithm – the module implements the gradient enhanced heuristic described 

in section 4. It solves the CSP problems for constructing optimal coalitions of prosumers in VPPs 

leveraging on the optimization data models defined. 

• Visualization pages – a React JS [32] module that is used to provide a web-based graphical user 

interface. It provides a GUI over the Public REST API, to facilitate the access for users. 

• Public REST API – used to expose the functionality of the module, such as energy trading, capacity 

bidding, spinning reserve or DR optimization problem solving (see Table 6). 

Table 6. Public REST API of the component  

Public REST API 

Construct VPP for energy trading 

Description Through this interface, actors or other modules may post requests for the construction of a coalition 

of prosumers able to buy/sell a specific amount of energy from the energy marketplace also 

considering the energy price signal. 

End-point URL /vpp/energy-trading 

Allowed HTTP 

Methods 

POST 

Request Body { 

 "prosumers": [ {  

  "prosumerId": "4836bee7-bc42-48a9-9e4e-aa1ecc68e6d8", 

  "predictedProfile": { [  

   {"value": 57167.566, 

                   "timestamp": "2018-09-08T00:00:00" 

   },        

                { 

   "value": 57174.233,     

                                                "timestamp": "2018-09-08T01:00:00" 

   }, ... ], 

   "entityDeviceId":"ab7d658d-84cd-4662-b573-74db92a297f2", 

                "deviceMeasurementId":"c0a735f0-b6fe-47e6-b951-79910cd0e822", 

   "profileGranularityMinutes": 60, 

   "predictionGranularity": "DAYAHEAD", 

   "property": "ENERGY PRODUCTION" 

  }, 

  "uncertainty": {    

   "min": 0.8, 

   "max": 1.2, 

   "entityDeviceId":  "ab7d658d-84cd-4662-b573-74db92a297f2", 

                   "deviceMeasurementId":"c0a735f0-b6fe-47e6-b951-79910cd0e822", 

   "property": "Degradation-Trend" 

  } 

  "prosumerDetails": { 

   "specification": {...} 

   "type": "DEG" 

  } 
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 }, .… ], 

 

 "goal": { 

  type" : "ENERGY TRADING", 

  "priceSignal": [ 

   {"value": 157167, 

     "timestamp": "2018-09-08T00:00:00" 

   }, 

   {"value": 157234, 

     "timestamp": "2018-09-08T01:00:00" 

   }, ... ] 

 } 

} 

Response  { 

 "coalitionId": "4726bee7-bc42-48a9-9e4e-aa1ecc68e6f1", 

 "selectedProsumers":[ {  

  "prosumerId": "4836bee7-bc42-48a9-9e4e-aa1ecc68e6d8", 

  "prosumerType": "DEG",  

  "tradedEnergy": [ 

   {"value": 57160,      

                                                 "timestamp": "2018-09-08T00:00:00" 

   }, 

   {"value": 57170,      

                                                 "timestamp": "2018-09-08T01:00:00" 

   }, ...  

  ] 

 }, ...] 

 "totalEnergyTraded":  [ 

  {"value": 157160, 

    "timestamp": "2018-09-08T00:00:00" 

  }, 

  {"value": 157230, 

    "timestamp": "2018-09-08T01:00:00" 

  }, ...  

 ] 

} 

Construct VPP for capacity bidding 

Description Through this interface, actors or other modules may post requests for the construction of a coalition 

of prosumers able to provide a replacement capacity on short notice. 

End-point URL /vpp/capacity-bidding 

Allowed HTTP 

Methods 

POST 

Request Body  { 

 "prosumers": [ {  

  "prosumerId": "4836bee7-bc42-48a9-9e4e-aa1ecc68e6d8", 

  "predictedProfile": { [  

   { 

   "value": 57167.566,   

                                  "timestamp": "2018-09-08T00:00:00" 
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   },        

                              { 

   "value": 57174.233,     

                                                "timestamp": "2018-09-08T01:00:00" 

   }, ... ], 

   "entityDeviceId":"ab7d658d-84cd-4662-b573-74db92a297f2", 

   "deviceMeasurementId":"c0a735f0-b6fe-47e6-b951-79910cd0e822", 

   "profileGranularityMinutes": 60, 

   "predictionGranularity": "DAYAHEAD", 

   "property": "ENERGY PRODUCTION" 

  }, 

  "uncertainty": {    

   "min": 0.8, 

   "max": 1.2, 

   "entityDeviceId":  "ab7d658d-84cd-4662-b573-74db92a297f2", 

   "deviceMeasurementId":"c0a735f0-b6fe-47e6-b951-79910cd0e822", 

   "property": "Degradation-Trend" 

  } 

  "prosumerDetails": { 

   "specification": {...} 

   "type": "DEG" 

  } 

 }, .… ], 

 

 "goal": { 

  type" : "CAPACITY BIDDING", 

  "priceSignal": [ 

   {"value": 135000, 

     "timestamp": "2018-09-08T00:00:00" 

   }, 

   {"value": 157000, 

     "timestamp": "2018-09-08T01:00:00" 

   }, ... ] 

 } 

} 

Response { 

 "coalitionId": "4726bee7-bc42-48a9-9e4e-aa1ecc68e6f1", 

 "selectedProsumers":[ {  

  "prosumerId": "4836bee7-bc42-48a9-9e4e-aa1ecc68e6d8", 

  "prosumerType": "DEG",  

  "biddedEnergy": [ 

   { 

   "value": 54412,   

                                  "timestamp": "2018-09-08T00:00:00" 

   }, 

   { 

   "value": 57123,      

                                                "timestamp": "2018-09-08T01:00:00" 

   }, ...  

  ] 
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 }, ...] 

 "totalEnergyBidded":  [ 

  {"value": 136000, 

    "timestamp": "2018-09-08T00:00:00" 

  }, 

  {"value": 150000, 

    "timestamp": "2018-09-08T01:00:00" 

  }, ...  

 ] 

} 

Construct VVP coalition for providing spinning reserve 

Description Through this interface, actors or other modules may request the dynamic construction of a VPP 

coalition of prosumers able to provide spinning reserve service on demand by activating or 

deactivating un-used capacity which can modify the reactive power. 

End-point URL /vpp/spinning-reserve 

Allowed HTTP 

Methods 

POST 

Request Body  { 

 "prosumers": [ {  

  "prosumerId": "4836bee7-bc42-48a9-9e4e-aa1ecc68e6d8", 

  "predictedProfile": { [  

   {"value": 57167.566,  

                                  "timestamp": "2018-09-08T00:00:00" 

   },        

                 {"value": 54334.233,    

                                                 "timestamp": "2018-09-08T01:00:00" 

   }, ... ], 

   "entityDeviceId":"ab7d658d-84cd-4662-b573-74db92a297f2", 

   "deviceMeasurementId":"c0a735f0-b6fe-47e6-b951-79910cd0e822", 

   "profileGranularityMinutes": 60 , 

   "predictionGranularity": "DAYAHEAD", 

   "property": "ENERGY PRODUCTION" 

  }, 

  "uncertainty": {    

   "min": 0.8, 

   "max": 1.2, 

   "entityDeviceId":  "ab7d658d-84cd-4662-b573-74db92a297f2", 

   "deviceMeasurementId":"c0a735f0-b6fe-47e6-b951-79910cd0e822", 

   "property": "Degradation-Trend" 

  } 

  "prosumerDetails": { 

   "specification": {...} 

   "type": "DEG" 

  } 

 }, .… ], 

 

 "goal": { 

  "type": "SPINNING RESERVE", 

  "priceSignal": [ 

   {"value": 150000, 
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     "timestamp": "2018-09-08T00:00:00" 

   }, 

   {"value": 167000, 

     "timestamp": "2018-09-08T01:00:00" 

   }, ... ] 

 } 

} 

Response { 

 "coalitionId": "4726bee7-bc42-48a9-9e4e-aa1ecc68e6f1", 

 "selectedProsumers":[ {  

  "prosumerId": "4836bee7-bc42-48a9-9e4e-aa1ecc68e6d8", 

  "prosumerType": "DEG",  

  "biddedEnergy": [ 

   {"value": 57312,   

                                                "timestamp": "2018-09-08T00:00:00" 

   }, 

   {"value": 54323,       

      "timestamp": "2018-09-08T01:00:00" 

   }, ...  

  ] 

 }, ...] 

 "totalEnergySpinned": [ 

  {"value": 150000, 

    "timestamp": "2018-09-08T00:00:00" 

  }, 

  {"value": 136000, 

    "timestamp": "2018-09-08T01:00:00" 

  }, ...  

 ] 

} 

Construct VVP coalition for demand response  

Description Through this interface, actors or other modules request the construction of a coalition of prosumers 

in VPP able to provide a requested target generation on demand.  

End-point URL /vpp/demand-response 

Allowed HTTP 

Methods 

POST 

Request Body { 

 "prosumers": [ {  

  "prosumerId": "4836bee7-bc42-48a9-9e4e-aa1ecc68e6d8", 

  "predictedProfile": { [  

   {"value": 57167.566,    

                                   "timestamp": "2018-09-08T00:00:00" 

   },        

                 {"value": 57174.233,   

                                  "timestamp": "2018-09-08T01:00:00" 

   }, ... ], 

   "entityDeviceId":"ab7d658d-84cd-4662-b573-74db92a297f2", 

   "deviceMeasurementId":"c0a735f0-b6fe-47e6-b951-79910cd0e822", 

   "profileGranularityMinutes": 60, 

   "predictionGranularity": "DAYAHEAD", 
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   "property": "ENERGY PRODUCTION" 

  }, 

  "uncertainty": {    

   "min": 0.8, 

   "max": 1.2, 

   "entityDeviceId":  "ab7d658d-84cd-4662-b573-74db92a297f2", 

   "deviceMeasurementId":"c0a735f0-b6fe-47e6-b951-79910cd0e822", 

   "property": "Degradation-Trend" 

  } 

  "prosumerDetails": { 

   "specification": {...} 

   "type": "DEG" 

  } 

 }, .… ], 

 

 "goal": { 

  "type": "DEMAND RESPONSE", 

  "priceSignal": [ 

   {"value": 150000, 

     "timestamp": "2018-09-08T00:00:00" 

   }, 

   {"value": 112000, 

     "timestamp": "2018-09-08T01:00:00" 

   }, ... ] 

 } 

} 

Response { 

 "coalitionId": "4726bee7-bc42-48a9-9e4e-aa1ecc68e6f1", 

 "selectedProsumers":[ {  

  "prosumerId": "4836bee7-bc42-48a9-9e4e-aa1ecc68e6d8", 

  "prosumerType": "DEG",  

  "biddedEnergy": [ 

   {"value": 57312,    

                                                "timestamp": "2018-09-08T00:00:00" 

   }, 

   {"value": 53223,      

                                                 "timestamp": "2018-09-08T01:00:00" 

   }, ...  

  ] 

 }, ...] 

 "totalEnergyMatched":  [ 

  {"value": 150000, 

    "timestamp": "2018-09-08T00:00:00" 

  }, 

  {"value": 140000, 

    "timestamp": "2018-09-08T01:00:00" 

  }, ...  

 ] 

} 
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For evaluation we had conducted both qualitative and quantitative experiments to measure the performance 

of the proposed hybrid algorithm and capability of creating the dynamic coalition prosumers for some of the 

services defined.  

We evaluated our hybrid gradient enhanced heuristic approach by comparing it with a state-of-the art 

commercial solver, Lingo Lindo [31], which uses a branch-and-bound technique for integer variables 

combined with a gradient-based method for computing the continuous variables. We implemented the VPP 

demand response CSP optimization problem in both Lingo and in our algorithm and compare the execution 

time and the best value computed for the optimization function. Several scenarios were generated featuring 

the parameters described in Table 7. We run in total 20 experiments, 5 experiments with 𝑇 = 8 and 𝑁 = 50, 

5 experiments with 𝑇 = 8 and 𝑁 = 75, 5 experiments with 𝑇 = 8 and 𝑁 = 75 and 5 experiments with 𝑇 =

24 and 𝑁 = 100. For each group of 5 experiments, we computed the average running time of our solution, 

and for the Lingo solution. 

Table 7. Parameters for solver evaluation 

Parameter Values 

T – VPP construction and optimization future time window 8, 24 

N – number of prosumers in local grid serving as base for the coalition 

construction   

5, 75, 100 

Number of scenarios run for each configuration 5 

Prosumer energy values lower and upper bounds 𝐸𝑀𝑖𝑛 = 1 𝑘𝑊ℎ; 𝐸𝑀𝑎𝑥 = 10 𝑘𝑊ℎ 

 

The 1st set of experiments aims at evaluating the running time and the objective function minimum value 

determined by varying the number of prosumers aiming to determine the best coalition from a variable 

number of prosumers. We varied the number of prosumers N for three values: 50, 75 and 100. The results 

depicted in Figure 16 left show that for a fixed optimization time window of length T=8, gradient enhanced 

heuristic running time increases linearly, from 3400 seconds to 12000 seconds. The Lingo running time varies 

between 1 minute and 3 minutes. Figure 16-right shows the minimum value found by the algorithms, the 

Gradient Enhanced Heuristic being able to find a result with almost 50% better than the Lingo Heuristic. 

However, this comes at a cost of a running time increased with almost 10000%, thus being unsuitable.  

 

Figure 16. Gradient Enhanced Heuristic Vs Lingo – comparison for fixed time window size T = 8 (left-execution time; right – 

objective function minimum value)  

The 2nd set of experiments aims at evaluating the execution time and solution quality for 100 prosumers. In 

this case, when the optimization window is 8, the Lingo gives better results, regarding execution time. 

However, when the optimization window time is increased to 24, the Lingo optimizer solving times increases 
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more than the Gradient Enhanced Heuristic, even if the solution computed yields better result with 30% than 

the Gradient Enhanced Heuristic (see Figure 17). 

 

Figure 17. Gradient Enhanced Heuristic vs Lingo – comparison for fixed number of prosumers N=100 (left-execution time; right – 

objective function minimum value) 

Considering the results shown above, the gradient enhanced heuristic has large execution time, but it 

manages to increase linearly with the problem size. The Lingo solver has very low running time and computes 

good solutions for small problem sizes. However, when the problem size increases, the Lingo solver has worse 

results than our approach.  

The 3rd set of experiments aim to show our approach capability on solving the VPP specific CSP problems and 

generating the prosumers coalitions tailored to the specific services constraints. In particular, we aim to 

determine the sub set of prosumers such that they can provide an aggregated energy generation that follows 

closely a requested curve time window of 24 hours provided by a third party such as the DSO.  

In our scenario we have considered a pool of N=50 prosumers from which the optimal subset forming the 

coalition need to be selected. For each prosumer a 24 hour-ahead energy generation profile 𝐸𝑘 is used. Figure 

18 shows the 50 prosumers profiles. 

 

Figure 18. Prosumer portfolio from which the VPP coalition will be created  

Figure 19 top presents the requested energy generation profile coloured in red and total energy produced by 

the VPP coloured in green which was dynamically created from a coalition of 4 prosumers (selected out of 50 

available) to optimally match the request. The Figure 19-bottom shows the disaggregation of the coalition 

composed from individual prosumers taken from the prosumer pool shown in Figure 18. The dynamically 

created coalition manages to follow the requested generation curve with an accuracy of 9.31%, by selecting 

a subset of 4 prosumers from the pool of 50 prosumers.  
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Figure 19. VPP coalition formation (top- requested generation profile and VPP total energy produced; bottom – energy profiles of 

selected prosumers as part of new created VPP coalition) 

The 4th set of experiments corresponds to the VPP energy Trading Service Optimization Problem defined in 

Figure 4 meaning the trading of energy for maximizing the participants profit. The portfolio of  50 prosumer 

out of which the VPP will be constructed have the 8 hour generation profiles depicted in Figure 20. 

 

Figure 20. Portfolio of prosumers. Energy generation over 8 hours’ interval  
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Thus we are aiming to determine a subset of energy prosumers from the portfolio able to deliver an energy 

amount proportional with the energy prices depicted in Figure 21-left over a 4 hour time interval. In the first 

2 hours the energy price is low, while during the last 2 hours the energy price increases while the total energy 

generated by the portfolio of prosumers without optimization, depicted in Figure 21-right, shows that more 

energy is generated while the price is low.   

 

Figure 21. Energy Price over a 4-hour time interval (left) and total energy of the prosumer portfolio (right) 

Thus, in the coalition the prosumers that produce more energy in the second part of the optimization interval 

would be selected, leading to an increase of their profit compared to the initial revenue received if they would 

sell their energy as produced. Furthermore, by having a smaller set of prosumers, they can also use the 

batteries from the system to store energy when the price is low, and sell it when the price is high. We model 

a set of batteries with the total capacity of 30 kWh, and a charge/discharge cost of 0.1 euro/KWh for a 

maximum Depth of Discharge DoD = 40% (computed considering a battery price of approximately 200 euro 

per KWh and 2000 life cycles) and a charge-discharge loss of 15%.  

The Virtual Power Plant coalition can be seen in Figure 22-left. The total energy generated by the power plant 

follows the energy price profile to maximize the profit.  A number of 7 prosumers were selected, with the 

average revenue with over 40% higher for each prosumer, compared to the initial values. The battery was 

used to store energy when the price was low, as shown in Figure 22-rigth, and discharged when the energy 

price started to increase.  

 

Figure 22. VPP coalition created for trading energy (left); Battery usage during coalition optimization interval (right) 

The 5th set of experiments corresponds to the optimization problem defined in Figure 5, that aims at 

determining a subset of prosumers that can offer target capacity level during a 4 hour time interval. We aim 

at selecting the best fitting prosumers from the portfolio depicted in Figure 20 that can offer a constant 

15kWh capacity. 
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Figure 23. Virtual Power Plant Coalition for Capacity Bidding Service 

The coalition formed by the 9 selected prosumers to offer the 15 kWh capacity over the 4 hour time interval 

is depicted in Figure 23, showing that the stacked energy profiles cover the energy area coloured in green of 

the requested capacity. 
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6 Conclusion and future work 

In this deliverable, we had proposed a VPP model which allows us to formalize the problem of dynamic 

construction of optimal coalitions of prosumers in VPPs as a constraint satisfaction problem which can be 

tailored and adapted to different types services the new constructed VPP may offer. Using our model, we 

have defined the dynamic construction of VPPs for different objectives, such as to trade energy in day ahead 

and intraday, to sell on short notice replacement capacity to a power plant, which can’t meet its commitment, 

to provide frequency regulation committing unused capacity and to meet specific energy generation requests. 

At the same time, we had proposed a hybrid optimization technique, which combines the gradient-based 

solutions with nature-inspired heuristics for achieving fully distributed platform for creating prosumers 

coalitions. Our solution time complexity scales linearly with the number of prosumers to be considered in the 

optimization problem compared with the state-of-the-art approaches. This is very important, eDREAM targets 

to aggregate many small-scale prosumers facilitating the participation through the VPP of small-scale 

producers as little as 1 kWh capacity generation. The evaluation results are showing our approach feasibility 

in constructing coalitions for optimal trading of energy, capacity bidding and VPP DR optimization.  

In the next deliverable iteration, we aim to refine and improve the defined CSP optimization problems for 

various type of services the VPP may provide, to formalize the optimal coalition formation to other types of 

services and to investigate the potential of hybrid heuristic to be decentralized and run over blockchain based 

infrastructure. In the blockchain integration case, we will aim to investigate two directions:  running the hybrid 

optimization algorithm as external service integrated with the blockchain using oracles and building a 

consensus algorithm based on solving the optimization problem which is NP-hard one.  
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