

The eDREAM project is co-founded by the EU’s Horizon 2020 innovation

programme under grant agreement No 774478

DELIVERABLE: 5.5 Self-enforcing smart contracts for DR tracking and
control V2

Authors: Tudor Cioara, Claudia Pop, Ioan Salomie

Ref. Ares(2020)2808244 - 29/05/2020

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 2

Imprint

D5.2. Self-enforcing smart contracts for DR tracking and control V2 (Month 29)

Contractual Date of Delivery to the EC: 31.05.2020

Actual Date of Delivery to the EC: 31.05.2020

Author(s): Claudia Pop (TUC), Marcel Antal (TUC), Tudor Cioara (TUC), Ionut

 Anghel (TUC), Viorica Chifu (TUC), Cristina Pop (TUC), Ioan

 Salomie (TUC), Andreea Valeria Vesa (TUC)

Participant(s): Lead Partner: Technical University of Cluj-Napoca (TUC)

Contributors: ENG, ASM, EMOT

Project: enabling new Demand Response Advanced,

 Market oriented and secure technologies,

 solutions and business models (eDREAM)

Work package: WP5 – Blockchain-enabled decentralized network control
optimization and DR verification

Task: T5.2 - Blockchain-driven self-enforcing smart contracts for DR

energy transactions modelling, tracking and decentralized control

Confidentiality: public

Version: 0.99

Legal Disclaimer

The project enabling new Demand Response Advanced, Market-oriented and secure technologies, solutions and

business models (eDREAM) has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 774478. The sole responsibility for the content of this publication lies with the

authors. It does not necessarily reflect the opinion of the Innovation and Networks Executive Agency (INEA) or the

European Commission (EC). INEA or the EC are not responsible for any use that may be made of the information

contained therein.

Copyright

© Technical University of Cluj-Napoca, eDREAM Consortium. Copies of this publication – also of extracts thereof – may

only be made with reference to the publisher.

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 3

Table of Contents

List of Figures ... 4

List of Tables .. 5

List of Acronyms and Abbreviations .. 6

Executive Summary ... 7

1 Introduction .. 8

1.1 Purpose .. 8

1.2 Relation to other activities .. 8

1.3 Structure of the document .. 9

2 Mechanism for Demand - Offer Matching .. 10

2.1 Energy Bids-Offers Matching ... 10

2.2 Flexibility Request – Order-matching .. 16

2.3 Price-driven Flexibility Bids-Offers Matching ... 17

3 Price-driven Flexibility Marketplace ... 22

4 Blockchain Platform for Micro-Grid Energy Management .. 27

4.1 Peer-to-peer Energy Trading .. 27

4.2 Decentralized Flexibility Services Management and Control .. 29

4.3 Price-driven Flexibility Marketplace .. 33

5 Conclusion ... 37

References ... 38

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 4

List of Figures

Figure 1. eDREAM PERT chart showing WP5 and T5.2 in relation to other work packages 8

Figure 2. Session energy clearing price calculation ... 11

Figure 3. Energy bids / offers matching using a Greedy approach .. 12

Figure 4. Energy trade structure implementation in Solidity .. 13

Figure 5. Augmented graph for modelling the energy flow among offers and bids.. 13

Figure 6. Energy bids / offers matching using an augmented graph-based solution 14

Figure 7. Matching energy bids and offers matching using Oracles .. 15

Figure 8. Oracle-based matching of a flexibility request to a set of DEPs flexibility orders 16

Figure 9. Oracle-based matching of flexibility bids and flexibility offers in the Price-driven Flexibility

Marketplace ... 19

Figure 10. Optimization problem of matching flexibility bids and offers .. 20

Figure 11. Greedy heuristic for flexibility bids offers matching problem .. 21

Figure 12. Smart contracts interaction flow in the Price Driver Flexibility Market implementation 23

Figure 13. Buyer registering a flexibility bid .. 24

Figure 14. Flexibility buyer and seller smart contract modelled in the flexibility marketplace 25

Figure 15. Seller registering a flexibility offer .. 26

Figure 16 Flexibility Order (i.e. bid or offer) and Flexibility Trade data structure ... 26

Figure 17. Energy stakeholder options in the eDREAM blockchain platform for micro-grid energy management

 ... 27

Figure 18. Web page for showing the Prosumer estimated energy profiles and potential bids/offers 27

Figure 19. Energy transaction registered on the blockchain platform .. 28

Figure 20. Energy transaction validation using monitored data and participants accounts settlement 28

Figure 21. Energy Market Operator view on energy bids and offers submitted in a market session.............. 29

Figure 22. Energy Market Operator view matched bids and offers and reference price calculation for a market

session ... 29

Figure 23. DSO view on micro -grid predicted state and flexibility request generation 30

Figure 24. Aggregator view on the forecast flexibility availability of enrolled prosumers 30

Figure 25. Flexibility request to prosumer flexibility order split .. 31

Figure 26. Flexibility delivery and compliance of the prosumers enrolled with the service 31

Figure 27. Prosumer view on flexibility availability and aggregator flexibility order signal 32

Figure 28. Prosumer actual flexibility delivery information .. 32

Figure 29. Previous market session flexibility bid / offers volumes and prices ... 33

Figure 30. Forecast flexibility availability and sell flexibility offer ... 33

Figure 31. Registered flexibility transaction in the blockchain .. 34

Figure 32. Monitoring the flexibility delivery and flexibility transaction settlement 34

Figure 33. Relevant information for creating flexibility buy bid displayed for the DSO 35

Figure 34. Flexibility buyer monitoring the flexibility delivery of matched flexibility sellers 35

Figure 35. Flexibility Market Operator view on energy flexibility bids and offers submitted in a market session

as well as on the matched ones .. 36

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 5

List of Tables

Table 1. Energy information of flexibility seller used for flexibility offer construction 17

Table 2. Flexibility buyer smart contract state variables ... 24

Table 3 Flexibility seller smart contract state variables ... 24

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 6

List of Acronyms and Abbreviations

API Application Programming Interface

DEP Distributed Energy Prosumer

DR Demand Response

DSO Distributed System Operator

eDREAM enabling new Demand Response Advanced, Market oriented and secure technologies,

solutions and business models

MINLP Mathematical Program of class Mixed Integer Nonlinear Program

NP Nondeterministic Polynomial time

P2P Peer-to-peer

TSO Transmission System Operator

WP Work Package

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 7

Executive Summary

In this deliverable we present the development work and enhancements brought in addition to the eDREAM

blockchain-based platform for micro-grid energy management the initial version of which was realised in

deliverable “D5.2 - Self-enforcing smart contracts for DR tracking and control V1”.

For each type of decentralized management solution exposed by the eDREAM blockchain platform, in this

deliverable, we present the defined and implemented algorithms matching the demand and the offer. First,

we present the matching algorithms for the blockchain-driven peer-to-peer energy marketplace

implementation which are aiming to determine at the end of the energy market session both the market

clearing price and the pair of energy bids and offers that will form the direct peer-to-peer transactions. Two

types of algorithm have been implemented: (i) a greedy approach that sorts the lists of orders and bids in

descending order and tries to match them from the largest one to the smaller ones and (ii) an augmented

bipartite graph-based approach where the vertices are formed by the sets of bids and offers while the edges

are representing the energy flow between prosumers and transmission capacity as constraints.

Second, we have refined and improved the algorithm that is matching the flexibility request of an aggregator

to a set of flexibility orders signals to be followed by individual prosumers. The algorithm was implemented

and integrated with the blockchain-driven DR and flexibility services management and control and it starts by

optimally decomposing the flexibility request and then determines a subset of prosumers from the aggregator

portfolio able to deliver a specific amount of flexibility. Third, we have implemented an algorithm for optimal

matching of flexibility bids and flexibility offers, considering the associated price as an additional vector to

the actual amount of flexibility committed. We addressed this optimization problem using a greedy heuristic

that is derived from the best-fit approximation algorithm used for bin-packing. The algorithm has been

implemented and integrated with the blockchain-based price-driven flexibility marketplace.

Besides the smart contracts-based implementation of the peer-to-peer energy marketplace and of the

decentralized provisioning and control of flexibility services which have been detailed in D5.2, in this

deliverable we present the smart contract-based implementation of a price-driven flexibility marketplace

allowing the trading of energy flexibility between sellers (i.e. prosumers or aggregators) and buyers (DSO,

aggregators or even the TSO). Non-fungible energy-adapted tokens are defined and used to transform the

energy into a transactable digital asset. The flexibility sellers and flexibility buyers participate in the flexibility

market sessions by leveraging on self-enforcing smart contracts to submit energy flexibility bids/offers with

the associated prices. The flexibility market session smart contracts keep a record of all the registered

flexibility energy bids and offers, their matching being managed outside of the chain via Oracles-based

integration of defined algorithms, while the market manager contracts keep track of all the opened sessions

and make the necessary validations regarding the participants' activity. The decision on the actual share of

energy flexibility which has been effectively delivered by each flexibility seller and associated financial

settlement is conducted using smart contracts that are considering the actual monitored energy information.

Finally, we have provided an overview of the functionality implemented by the eDREAM blockchain-based

micro-grid for each type of energy stakeholder and exposed via relevant web interfaces. The web interfaces

are presented for each type of management solution provided (i.e. peer-to-peer energy trading, decentralized

flexibility services management, and price-driven flexibility trading) using interaction steps for the success

use-case scenario.

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 8

1 Introduction

1.1 Purpose

This report provides an overview of the work carried out in Task 5.2 between months 18 and 29 for developing

and improving the blockchain-based platform for the distributed control and management of the micro-grid

initially presented in D5.2.

The work has been concentrated in three main directions:

• The definition, implementation and integration of demand-to-offer-matching algorithms for all the

functionalities of the blockchain platform: P2P energy trading, decentralized control and delivery of

energy flexibility, price-driven energy flexibility marketplace;

• Implementation of a price-driven flexibility marketplace which is leveraging on self-enforcing smart

contracts for allowing the buyers and sellers to trade energy flexibility;

• Refinement and improvement of the blockchain platform features released in D5.2 and

implementation of web-based interfaces to facilitate the interaction of the main actors.

1.2 Relation to other activities

WP5 and T5.2 use the outputs of WP2 in terms of requirements and use-cases as well as the outputs of WP3

in terms of energy demand/generation forecasting, prosumers’ baseline and flexibility assessment. These are

used to set up and to drive the execution of the self-enforcing smart contracts to deliver the functionalities

expected with the three micro-grid management alternatives considered in eDREAM.

Figure 1. eDREAM PERT chart showing WP5 and T5.2 in relation to other work packages

T5.2

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 9

1.3 Structure of the document

The remainder of the report is organized as follows.

• Section 2 presents the mechanism defined and implemented for matching in a decentralized fashion

the demand and the offer. The section reports the algorithms for the decentralized matching of

energy bids and offers, flexibility request and flexibility orders and finally the price-driven flexibility

bids and flexibility orders;

• Section 3 describes a blockchain implementation of the price-driven energy flexibility marketplace

which empowers the prosumers to sell their flexibility while other energy players such as the DSO

and aggregators will compete on buying flexibility;

• Section 4 presents the blockchain platform for micro-grid management focusing on to the main web

interfaces and functionalities implemented for actors’ interaction;

• Section 5 concludes the deliverable.

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 10

2 Mechanism for Demand - Offer Matching

In this section we detail the mechanisms we have defined and implemented for matching the demand and

offer in three blockchain-driven micro-grid energy management alternatives supported by the eDREAM

platform: (1) P2P energy marketplace, (2) DR and flexibility decentralized management and control and (3)

price-driven energy flexibility marketplace.

For (1) and (2) the blockchain design and associated smart contracts implementation have been presented in

detail in D5.2. while for (3) the smart contracts are presented in Section 3.

2.1 Energy Bids-Offers Matching

The mechanisms presented in this section are related to the blockchain driven peer-to-peer energy

marketplace implementation. Their role is to determine at the end of the energy market session both the

market clearing price and the pair of energy bids and offers that will form the direct peer-to-peer transactions.

Firstly, the set of energy bids and offers are extracted from the market session, and the session clearing

algorithm from is executed to compute the clearing price and determine the bids and offers that could be

potentially matched (see Figure 2). The algorithm has a polynomial complexity.

All valid energy offers are put in ascending order (i.e. considering their associated price) on an aggregated

energy supply curve and all valid energy bids are put in descending order (i.e. considering their associated

price) on an aggregated energy demand curve (see lines 1-2). Then, a loop is used to iterate through price –

ordered energy bids and offers and to determine the index of the energy bid and the energy offer where the

ascending offer price and the descending bid price intersect (see lines 7-17). The intersection of the two

curves determines the clearing price, at which all accepted bids and offers are remunerated (see line 20), the

overall quantity of energy traded in the session (see lines 18-19) and the selected energy bids/offers. A

method that considers several corner cases of intersecting two polylines is called to compute the exact

intersection price. Finally, the clearing price and the list of energy bids and offers selected to be matched are

returned (see line 21).

Input: list of energy offers and energy bids from the market session 𝑂𝑓𝑓𝑒𝑟𝑠[𝑃], 𝐵𝑖𝑑𝑠[𝑄]

Output: market session clearing price 𝑃𝑟𝑖𝑐𝑒𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔

 selected energy bids and offers 𝑂𝑓𝑓𝑒𝑟𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑[𝑁], 𝐵𝑖𝑑𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑[𝑀]

Begin

1. 𝑆𝑜𝑟𝑡𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔(𝑂𝑓𝑓𝑒𝑟𝑠)

2. 𝑆𝑜𝑟𝑡𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 (𝐵𝑖𝑑𝑠)

3. 𝐼𝑛𝑑𝑒𝑥𝑂 = 1

4. 𝐼𝑛𝑑𝑒𝑥𝐵 = 1

5. 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑏𝑖𝑑 = 1

6. 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑜𝑓𝑓𝑒𝑟 = 1

7. while (𝑜𝑓𝑓𝑒𝑟[𝑖𝑛𝑑𝑒𝑥𝑜]. 𝑝𝑟𝑖𝑐𝑒 <= 𝑏𝑖𝑑[𝑖𝑛𝑑𝑒𝑥𝑏]. 𝑝𝑟𝑖𝑐𝑒) do

8. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑖𝑑𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑏𝑖𝑑 + 𝑏𝑖𝑑[𝑖𝑛𝑑𝑒𝑥𝑏]. 𝑎𝑚𝑜𝑢𝑛𝑡

9. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑠𝑘𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑜𝑓𝑓𝑒𝑟 + 𝑜𝑓𝑓𝑒𝑟[𝑖𝑛𝑑𝑒𝑥𝑜]. 𝑎𝑚𝑜𝑢𝑛𝑡

10. if (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑖𝑑𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 > 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑠𝑘𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡) then

11. 𝐼𝑛𝑑𝑒𝑥𝑂 + +

12. 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑜𝑓𝑓𝑒𝑟 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑠𝑘𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

13. else

14. 𝐼𝑛𝑑𝑒𝑥𝐵 + +

15. 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑏𝑖𝑑 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑖𝑑𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 11

16. end if

17. end while

18. 𝑂𝑓𝑓𝑒𝑟𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑜𝑓𝑓𝑒𝑟[0 𝑡𝑜 𝑖𝑛𝑑𝑒𝑥𝑜]

19. 𝐵𝑖𝑑𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑏𝑖𝑑𝑠[0 𝑡𝑜 𝑖𝑛𝑑𝑒𝑥𝑏]

20. 𝑃𝑟𝑖𝑐𝑒𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔𝑃
(𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑏𝑖𝑑 , 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑜𝑓𝑓𝑒𝑟 , 𝐼𝑛𝑑𝑒𝑥𝑂 , 𝐼𝑛𝑑𝑒𝑥𝐵)

21. 𝐫𝐞𝐭𝐮𝐫𝐧 𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔𝑝𝑟𝑖𝑐𝑒 , 𝑂𝑓𝑓𝑒𝑟𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , 𝐵𝑖𝑑𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

End

Figure 2. Session energy clearing price calculation

Secondly, an algorithm is defined and implemented to determine the minimum number of matchings

between the selected energy bids and energy offers (i.e. returned by the previous one) that will form the

peer-to-peer energy transactions. Because the problem at hand is an NP problem, a heuristics algorithm is

defined and implemented to solve it.

After running the algorithm from Figure 2, we know that the total amount of the 𝑀 bids is equal with the

total amount of the 𝑁 offers:

∑ 𝑜𝑓𝑓𝑒𝑟𝑖

𝑁

𝑖=1

= ∑ 𝑏𝑖𝑑𝑗

𝑀

𝑗=1

We aim to determine a mapping between the set of offers and the set of bids, with the least number of

mappings.

We construct a matrix 𝑃 ∈ 𝑅𝑀∗𝑁 of size 𝑀 ∗ 𝑁, where each element 𝑃(𝑖, 𝑗) defines the percentage of 𝑏𝑖𝑑𝑖

that is considered to address the 𝑜𝑓𝑓𝑒𝑟𝑗. Thus, each row of the matrix decomposes 𝑏𝑖𝑑𝑖 to each of the offers

placed as headers of the columns:

∑ 𝑃(𝑖, 𝑗)

𝑁

𝑗=1

= 1, ∀𝑖 ∈ {1. . 𝑀}

The offer is composed by the weighted sum of the bids from each column:

𝑜𝑓𝑓𝑒𝑟(𝑗) = ∑ 𝑃(𝑖, 𝑗) ∗ 𝑏𝑖𝑑(𝑖),

𝑀

𝑖=1

∀𝑖 ∈ {1. . 𝑁}

The goal is to minimize the number of elements of the matrix that are not zero, thus the objective can be

defined as:

𝑀𝐼𝑁(∑ ∑ 𝑓(𝑃(𝑖, 𝑗))

𝑀

𝑗=1

𝑁

𝑖=1

)

where the function 𝑓 is defined as a step function:

𝑓: [0,1] → {0,1}, 𝑓(𝑥) = {
0, 𝑖𝑓 𝑥 = 0
1, 𝑖𝑓 𝑥 > 0

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 12

The above defined optimization problem is classified as Nonlinear Programming, because the unknown

variable in the optimization function is the matrix 𝑃 containing real values in the interval [0,1] and the

objective function is not linear (i.e. the step function 𝑓).

The optimization problem is a NP-complete similar to the partition problem in computer science which is

aiming to partition a set of positive integers 𝑆 into two subsets 𝑆1 and 𝑆2 such that the sum of the numbers

in 𝑆1 equals the sum of the numbers in 𝑆2 [1]. This can be easily shown by considering the particular case of

our matching problem with 𝑁 offers and only 2 bids. In this case, the set 𝑆 is given by the 𝑁 offers with a total

amount of energy offer of ∑ 𝑜𝑓𝑓𝑒𝑟(𝑖)𝑁
𝑖=1 that has to be split in two sub-sets that are matching the energy

value of each individual bid. A solution of the partition problem will generate 𝑁 mappings between the set

of energy offers and the set of energy bids that is the minimum number of mappings possible. If one could

solve the partition problem in polynomial time, it could also solve the energy bid and offers matching

problem, implying that this problem is also NP.

The first solution defined to solve the energy bids/offers matching problem is based on a greedy approach

that sorts descending the lists of orders and bids and tries to match them from the largest one to the smaller

ones (Figure 3). This solution has a run time complexity of 𝑂(𝑁𝑙𝑜𝑔(𝑁) + 𝑀𝑙𝑜𝑔(𝑀)) given by the sort

operation complexity, while the actual matching computation has the complexity of 𝑂(𝑀 + 𝑁).

Input: Energy bids & offers selected by the energy clearing price calculation algorithm: 𝑂𝑓𝑓𝑒𝑟𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑[𝑁],

 𝐵𝑖𝑑𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑[𝑀] where 𝑀 is the total number of selected energy bids and 𝑁 the total number of selected

 energy offers

Outputs: pair of matched energy bids and offers: 𝑃[𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟][𝑖𝑛𝑑𝑒𝑥𝑏𝑖𝑑] with the value 1

Begin

1. 𝑆𝑜𝑟𝑡𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔(𝑂𝑓𝑓𝑒𝑟𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)

2. 𝑆𝑜𝑟𝑡𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔(𝐵𝑖𝑑𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)

3. 𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟 = 0

4. 𝑖𝑛𝑑𝑒𝑥𝑏𝑖𝑑 = 0

5. while (𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟 < 𝑁 𝑎𝑛𝑑 𝑖𝑛𝑑𝑒𝑥𝑏𝑖𝑑 < 𝑀) do

6. If (𝑂𝑓𝑓𝑒𝑟𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 [𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟] > 𝐵𝑖𝑑𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑[𝑖𝑛𝑑𝑒𝑥𝑏𝑖𝑑]) then

7. 𝑂𝑓𝑓𝑒𝑟𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑[𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟] = 𝑂𝑓𝑓𝑒𝑟𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑[𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟] – 𝐵𝑖𝑑𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑[𝑖𝑛𝑑𝑒𝑥𝑏𝑖𝑑]

8. 𝑃[𝑖𝑛𝑑𝑒𝑥𝑏𝑖𝑑][𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟] = 1

9. 𝑖𝑛𝑑𝑒𝑥𝑏𝑖𝑑 + +

10. else

11. 𝐵𝑖𝑑𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑖𝑛𝑑𝑒𝑥𝑏𝑖𝑑) = 𝐵𝑖𝑑𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑖𝑛𝑑𝑒𝑥𝑏𝑖𝑑) – 𝑂𝑓𝑓𝑒𝑟𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟)

12. 𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟 + +

13. 𝑃[𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟][𝑖𝑛𝑑𝑒𝑥𝑏𝑖𝑑] = 1

14. end if

15. end while

End

Figure 3. Energy bids / offers matching using a Greedy approach

To generate the associated energy trades, a parser id is defined and used to iterate the 𝑃 matrix and, in case

an element 𝑃[𝑖𝑛𝑑𝑒𝑥𝑏𝑖𝑑][𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟] = 1, meaning that there is a match mapping between the bid with id

𝐼𝐷(𝑖𝑛𝑑𝑒𝑥𝑏𝑖𝑑) and the offer with id 𝐼𝐷(𝑖𝑛𝑑𝑒𝑥𝑏𝑖𝑑), it creates an energy trade with the structure presented in

Figure 4. By parsing entire matrix 𝑃, a list of such trades is generated and published to the blockchain by the

Oracle as a single transaction.

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 13

struct Trade{

bytes32 id;

bytes32 buyOrderId;

bytes32 sellOrderId;

address prosumerBuyingAddress;

address payable prosumerSellingAddress;

uint timestamp;

uint tokenId;

uint quantity;

uint price;

}

Figure 4. Energy trade structure implementation in Solidity

The second solution defined to solve the energy bids/offers matching problem is based on a Graph-based

approach. The problem is modelled as a bipartite graph 𝐺 = {𝑉1, 𝑉2, 𝐸}, where the vertices are formed by the

sets of bids and offers:

𝑉1 = {𝑜𝑓𝑓𝑒𝑟𝑖|𝑖 ∈ {1. . 𝑁}}, 𝑉2 = {𝑏𝑖𝑑𝑖|𝑖 ∈ {1. . 𝑀}}

An edge eij ∈ E represents a transaction from 𝑜𝑓𝑓𝑒𝑟𝑖 to 𝑏𝑖𝑑𝑗. We define the function 𝑓: {𝑉1 ∪ 𝑉2} → 𝑅 as an

energy flow function between the vertices, with the following constraint:

𝑓𝑖𝑗 = 𝑓(𝑒𝑖𝑗) ≤ 𝑜𝑓𝑓𝑒𝑟𝑖

We use concepts from the Minimum-cost flow problem to compute an approximate solution of the problem.

We add a source connected to all the nodes from 𝑉1 and a sink to all the nodes from 𝑉2. We connect all the

nodes from 𝑉1 to all the nodes from 𝑉2, by creating a complete bipartite graph (see Figure 5).

Figure 5. Augmented graph for modelling the energy flow among offers and bids

We augment the graph by defining the energy capacity of the edges as follows:

• All edges connecting the source and the nodes from 𝑉1 have the capacities 𝐶𝑠𝑜𝑢𝑟𝑐𝑒
𝑜𝑓𝑓𝑒𝑟𝑖 defined as

𝐶𝑠𝑜𝑢𝑟𝑐𝑒
𝑜𝑓𝑓𝑒𝑟𝑖 = 𝑜𝑓𝑓𝑒𝑟𝑖. 𝑣𝑎𝑙𝑢𝑒

• All edges connecting the nodes from 𝑉2 with the sink have capacities 𝐶𝑏𝑖𝑑𝑖

𝑠𝑖𝑛𝑘 defined as

𝐶𝑏𝑖𝑑𝑖

𝑠𝑖𝑛𝑘 = 𝑏𝑖𝑑𝑖. 𝑣𝑎𝑙𝑢𝑒

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 14

• All edges connecting nodes from 𝑉1 to all the nodes from 𝑉2 have the capacity 𝐶𝑖𝑗 defined as:

𝐶𝑖𝑗 = 𝑜𝑓𝑓𝑒𝑟𝑖. 𝑣𝑎𝑙𝑢𝑒

• All the edges connecting nodes from 𝑉1 to 𝑉2 have a positive costs 𝑎𝑖𝑗, considered as weights, while,

nodes from 𝑉2 to 𝑉1 have negative weights −𝑎𝑖𝑗

𝑎𝑖𝑗 = |𝑏𝑖𝑑𝑗 − 𝑜𝑓𝑓𝑒𝑟𝑖|

• The cost of sending a flow along the edge 𝑒𝑖𝑗 is computed as

𝑐𝑜𝑠𝑡𝑖𝑗 = 𝑓𝑖𝑗 ∗ 𝑎𝑖𝑗

In this case the bids and offers matching problem is represented in the graph as an amount of energy 𝑠 to be

sent from source to sink:

𝑠 = ∑ 𝑜𝑓𝑓𝑒𝑟𝑖 = ∑ 𝑏𝑖𝑑𝑗

𝑀

𝑗=1

𝑁

𝑖=1

The aim is to minimize the cost of the flow over the edges:

𝑀𝐼𝑁(∑ ∑ 𝑐𝑜𝑠𝑡𝑖𝑗

𝑀

𝑗=1

)

𝑁

𝑖=1

With the following constraints:

• Capacity constraints: 𝑓𝑖𝑗 ≤ 𝑐𝑖𝑗

• Symmetry: 𝑓𝑖𝑗 = −𝑓𝑗𝑖

• Flow conservation: ∑ 𝑓𝑢𝑤 = 0, ∀𝑢 ∈ 𝑉1 ∪ 𝑉2𝑤∈𝑉1∪𝑉2

• Required flow: ∑ 𝑓𝑠𝑜𝑢𝑟𝑐𝑒−𝑤 = 𝑠𝑤∈𝑉1∪𝑉2
= ∑ 𝑓𝑤−𝑠𝑖𝑛𝑘𝑤∈𝑉1∪𝑉2

We use Figure 6 algorithm to determine the maximum flow from the source to the sink.

Input: The augmented bipartite graph constructed for energy bids and offers submitted in a market session

Output: Energy flows on the edges of the graph

Begin

1. Apply Bellman-Ford algorithm to increase the costs of the edges and make them positive

2. While (∃ 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑜 𝑠𝑖𝑛𝑘)

3. Path (source, sink) = Dijkstra (with edge 𝑒𝑖𝑗 and weights as a 𝑎𝑖𝑗)

4. flow = 𝑀𝑖𝑛𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (path (sink, source))

5. For 𝑒𝑖𝑗 ∈ 𝑝𝑎𝑡ℎ(𝑠𝑖𝑛𝑘, 𝑠𝑜𝑢𝑟𝑐𝑒) do

6. 𝑒𝑖𝑗 . 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑒𝑖𝑗 . 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑓𝑙𝑜𝑤

7. End for

8. End while

End

Figure 6. Energy bids / offers matching using an augmented graph-based solution

The graph-based solution starts by applying the Bellman Ford algorithm that has a complexity of 𝑂(|𝑁 + 𝑀| ∗

|𝐸|) to increase the edge weights to positive values, so that the Dijkstra algorithm can be applied. According

to the graph construction, the number of edges is 𝐸 = 𝑁 + 𝑁 ∗ 𝑀 + 𝑀 and the number of vertices is 𝑉 =

𝑁 + 𝑀 + 2. Dijkstra is applied in the main loop of the algorithm due to its lower complexity of 𝑂(|𝐸| +

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 15

|𝑉| log(|𝑉|)) when using a Fibonacci heap. It is computing, the shortest path from the source to the sink (see

lines 2-8), with the weights represented by the augmented costs 𝑎𝑖𝑗, while the flow is computed as the

minimum of the capacities (see lines 5-7). The graph-based algorithm ends when no paths are found from

the source to the sink having an overall complexity of 𝑂(𝑁 ∗ 𝑀2 ∗ 𝑙𝑜𝑔 𝑁).

The matchings between the bids and the offers are computed by the number of energy flows between the

sources and the sinks the solution being contained in the energy flow values of the edges connecting nodes

of the bipartite graph. To generate the list of transactions with the structure from Figure 4, the graph data

structure are iterated and in case flow 𝑓𝑢𝑤 > 0 a trade is generated to mark a transaction between offer with

identifier 𝑢 and the bid with the identifier 𝑤. Then, a list of such trades is generated and published to the

blockchain by the Oracle as a single transaction.

Since blockchain smart contracts have limited resources for on-chain logic computation, and each instruction

is paid by the caller, we have implemented a solution that can be run off-chain while assuring the secure

integration with the blockchain implementation of the peer-to-peer energy market. We have used the

concept of Oracles for supporting the call of the complex logic or other APIs from outside the blockchain and

to provide in response the results necessary in the smart contracts execution. Such an Oracles-based solution

is presented in Figure 7.

Figure 7. Matching energy bids and offers matching using Oracles

The Oracle is a module that integrates the blockchain with the off-chain world. For our implementation, we

consider the oracle module to continuously listen for events that notify the necessity of results from the off-

chain algorithm (see step 2). Such an event will be always intercepted whenever the symbol market will throw

an end of a session event in the peer-to-peer energy marketplace. Once the Oracle intercepts such an event,

it will forward the request to the Session Clearing and Matching Service together with the list of energy bids

and offers submitted in the session with their price associated (see step 3). The clearing and matching service

will have assigned a pair of public-private keys, where the public key can be stored on-chain. Once the results

of the algorithm are obtained in terms of paired energy bids and offers, the service will sign them using the

private key and return them to the oracle (see step 5). The signature is necessary, since the oracle or any

other entity that intercepts the request can be a malicious entity aiming to tamper the matching results.

Furthermore, the Session Clearing and Matching Service must prove itself as the entity authorized to make

this computation through this signature. The results, together with the signature, are injected on chain using

a call-back function (see step 6). Once reaching the smart contract of the MarketSymbol and MarketSession

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 16

the contract will validate that the results are received from the authorized matching module (see step 7), and

that the data have not been tampered with, thus trusting the received results.

2.2 Flexibility Request – Order-matching

The mechanism presented in this section is a refined version of the one described in D5.2 and is related to

the blockchain driven DR and flexibility management and control. Its role is to determine a subset of

prosumers from the aggregator portfolio able to deliver a specific amount of flexibility and to calculate their

individual flexibility order curves to optimally match the aggregated request.

Figure 8. Oracle-based matching of a flexibility request to a set of DEPs flexibility orders

In this case, the optimization problem is to find and select the optimal subset of DEPs from the aggregator

portfolio and issue individual flexibility order signals so that their aggregated energy profiles will match the

flexibility request signal received by the aggregator from the DSO.

Due to the high overhead of the blockchain-based computations, the algorithm is implemented in an Oracle

that is activated when the aggregator receives a flexibility request from the DSO and collects the forecast of

energy flexibility form its enrolled distributed energy prosumers (DEPs) to determine at what extend it may

satisfy the request.

For each individual prosumer from its portfolio the aggregator needs the individual baseline energy demand

and flexibility availability in terms of above and below the baseline maximal values for the time interval of

the flexibility request [0. . 𝑇]:

𝐷𝐸𝑃𝑘 = {𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑘, 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐵𝑒𝑙𝑜𝑤
𝑘 , 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐴𝑏𝑜𝑣𝑒

𝑘 }, 𝑘 ∈ {1, . . 𝑁𝐷𝐸𝑃}

The events regarding the information collected for all prosumers (step 1) and the flexibility request (step 2)

are intercepted by the Oracle (step 3), which will invoke the external service Flexibility Request – Flexibility

Order Matching. The service will select the subset of prosumers and the associated flexibility order of each

individual prosumer such that will optimally match as aggregated the flexibility request.

For each prosumer 𝑘 that is selected, the service will compute a flexibility order for the prosumer, with the

constraint of being bounded within the availability limits:

𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐵𝑒𝑙𝑜𝑤
𝑘 (𝑡) ≤ 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑂𝑟𝑑𝑒𝑟

𝑘 (𝑡) ≤ 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐴𝑏𝑜𝑣𝑒
𝑘 (𝑡), 𝑡 ∈ {1. . 𝑇}

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 17

The Flexibility Optimization Service will have assigned a pair of public-private keys, where the public key can

be stored on-chain, the results are signed with the private key and return the results and the signature back

to the Oracle. The results together with the signature are injected on-chain using a call-back function. Once

reaching in the aggregator associated smart contract a validation will be conducted to determine if the results

are received from the authorized optimization service, and that the data has not been tampered with.

We model the action of selecting a prosumer 𝑘 to deliver flexibility for matching the request by a variable

𝑠(𝑘) ∈ {0,1}. The aggregated flexibility of the determined subset is computed as the sum of flexibility

requested to be delivered by the selected prosumers for each time step within the time window 𝑇:

𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟(𝑡) = ∑ 𝑠(𝑘) ∗ 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑂𝑟𝑑𝑒𝑟

𝑘 (𝑡)

𝑁𝐷𝐸𝑃

𝑘=1

, 𝑠(𝑘) ∈ {0,1}, 𝑘 ∈ {1. . 𝑁𝐷𝐸𝑃}

Finally, the service aims to minimize the distance between the flexibility request and the aggregated flexibility

of the selected prosumers. We use the Manhattan distance as the metric:

𝑑 (𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑅𝑒𝑞𝑢𝑒𝑠𝑡
𝐷𝑆𝑂 , 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟
) = ∑ |𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑅𝑒𝑞𝑢𝑒𝑠𝑡

𝐷𝑆𝑂 (𝑡) − 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟

(𝑡)|

𝑇

𝑡=1

Due to the continuous variables 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑂𝑟𝑑𝑒𝑟
𝐷𝐸𝑃 ∈ 𝑅𝑁𝐷𝐸𝑃∗𝑇 and integer variables 𝑠 ∈ 𝑍𝑁𝐷𝐸𝑃 , as well as the

non-linear objective function, the optimization problem is classified as mixed-Integer nonlinear problem.

2.3 Price-driven Flexibility Bids-Offers Matching

In Section 3 we present in detail the implementation of a price-driven flexibility marketplace over the

eDREAM blockchain platform in which various stakeholders can compete on buying and selling energy

flexibility. To make it operational beside the smart contracts, a fundamental component is the matching of

flexibility bids and flexibility offers considering the associated price as an additional vector to the actual

amount of flexibility committed. The matching algorithm implementation and integration with the blockchain

platform is detailed in the next paragraphs.

In the Price-driven Flexibility Marketplace facilitates the interaction of two types of actors: flexibility buyers

and flexibility sellers. The flexibility buyers are entities such that the Aggregators, DSO (Distribution System

Operator) or even the TSO (Transmission System Operator), while flexibility sellers are energy prosumers that

can adjust their energy demand to deliver flexibility. Furthermore, Aggregators can act either as flexibility

buyers (i.e. buy and aggregate flexibility from individual prosumers) or flexibility sellers (i.e. sell aggregated

flexibility on their enrolled to interested players such as the DSO) in a specific market session.

To be able to submit a flexibility offer on the Price-driven Flexibility Marketplace, the flexibility seller will

leverage its forecast energy data over the time interval of the offer [0. . 𝑇], as shown in Table 1.

Table 1. Energy information of flexibility seller used for flexibility offer construction

Data structure Measure Unit Description

𝑭𝒍𝒆𝒙𝒔𝒆𝒍𝒍𝒆𝒓
𝒌 . 𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆[𝑻] kWh Calculated baseline energy demand of the 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟

𝑘 expressed as an

array of 𝑇 energy values over the time interval [0. . 𝑇]

𝑭𝒍𝒆𝒙𝒔𝒆𝒍𝒍𝒆𝒓
𝒌 . 𝒇𝒍𝒆𝒙𝒂𝒃𝒐𝒗𝒆[𝑻]

kWh Flexibility availability above the baseline of the 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 expressed as

an array of 𝑇 values over the time interval [0. . 𝑇]. These values

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 18

represent the estimated maximum increase of the energy demand of

the 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 over its regular energy baseline.

𝑭𝒍𝒆𝒙𝒔𝒆𝒍𝒍𝒆𝒓
𝒌 . 𝒇𝒍𝒆𝒙𝒃𝒆𝒍𝒐𝒘[𝑻]

kWh Flexibility availability below the baseline of the 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 expressed as

an array of 𝑇 values over the time interval [0. . 𝑇]. These values

represent the estimated maximum decrease of the energy demand of

the 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 below its regular energy baseline.

The 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 sells flexibility, as all basic energy flexibility sellers that participate on Flexibility Market are

considered energy consumers, thus they place a flexibility offer showing how much they are willing to alter

their baseline, by increasing or decreasing their energy demand. 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑓𝑙𝑒𝑥𝑜𝑓𝑓𝑒𝑟 at timestamp 𝑡 is

positive if the 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 states that it will increase its energy demand, otherwise it is negative showing that

the 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 will decrease its energy demand.

𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑓𝑙𝑒𝑥𝑜𝑓𝑓𝑒𝑟[𝑡]

= {
𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟

𝑘 [𝑡]. 𝑓𝑙𝑒𝑥𝑎𝑏𝑜𝑣𝑒 − 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 [𝑡]. 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 > 0, 𝑖𝑓 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟

𝑘 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑖𝑡𝑠 𝑑𝑒𝑚𝑎𝑛𝑑

𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 [𝑡]. 𝑓𝑙𝑒𝑥𝑏𝑒𝑙𝑜𝑤 − 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟

𝑘 [𝑡]. 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 < 0, 𝑖𝑓 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑖𝑡𝑠 𝑑𝑒𝑚𝑎𝑛𝑑

To submit the offer, the flexibility seller will associate a price to its total energy flexibility 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑝𝑟𝑖𝑐𝑒[𝑇]

to be delivered, measured in €/𝑘𝑊ℎ or 𝐺𝑤𝑒𝑖 / 𝑘𝑊ℎ

Thus, the flexibility offer of a 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 consists of a tuple indicating how much it is willing to modify its

baseline by shifting the flexible energy at the price specified by the 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑝𝑟𝑖𝑐𝑒[𝑇]:

𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑜𝑓𝑓𝑒𝑟[𝑇] = {𝑓𝑙𝑒𝑥𝑜𝑓𝑓𝑒𝑟[𝑇], 𝑝𝑟𝑖𝑐𝑒[𝑇]}

The flexibility buyer flexibility bids are either positive or negative. If the request is positive, the matched

flexibility sellers will have to increase their energy demand by shifting flexible energy in the time interval of

the request. If the flexibility request is negative, the matched flexibility seller will have to decrease its energy

demand by shifting energy flexibility away from the flexibility request time interval.

𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑘 . 𝑓𝑙𝑒𝑥𝑟𝑒𝑞𝑢𝑒𝑠𝑡(𝑡) = {

> 0, 𝑡ℎ𝑒 𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑒𝑙𝑙𝑒𝑟𝑠 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑑𝑒𝑚𝑎𝑛𝑑
< 0, 𝑡ℎ𝑒 𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑒𝑙𝑙𝑒𝑟𝑠 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑑𝑒𝑚𝑎𝑛𝑑

The bid submitted by a flexibility buyer 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑘 , will consist of a tuple from the request and the price

associated with the request the buyer is willing to pay.

𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑘 . 𝑏𝑖𝑑[𝑇] = {𝑓𝑙𝑒𝑥𝑟𝑒𝑞𝑢𝑒𝑠𝑡[𝑇], 𝑓𝑙𝑒𝑥𝑃𝑟𝑖𝑐𝑒[𝑇]}

The Price-driven Flexibility Marketplace during an open market session collects bids and offers from 𝑁

flexibility sellers and 𝑀 flexibility buyers. An Oracle is intercepting the market session end event and will

forward a request to an external matching service to determine which of the 𝑁 offers matches best the 𝑀

bids (see Figure 9).

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 19

Figure 9. Oracle-based matching of flexibility bids and flexibility offers in the Price-driven Flexibility Marketplace

The Price-driven Flexibility Bids-Offers Matching Service will implement an algorithm that is aiming to find

the subset of flexibility sellers that, grouped together, can match each of the 𝑀 registered flexibility bids over

the time window [0. . 𝑇] at the lowest cost. We define a mapping function 𝑓𝑚𝑎𝑡𝑐ℎ that maps 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑜𝑓𝑓𝑒𝑟

to the flexibility bid 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑘 . 𝑏𝑖𝑑:

𝑓𝑚𝑎𝑡𝑐ℎ: {1. . 𝑁} → {0. . 𝑀}, 𝑓𝑚𝑎𝑡𝑐ℎ(𝑘)

= {
𝑝, 𝑝 ∈ {1. . 𝑀}, 𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟

𝑘 . 𝑜𝑓𝑓𝑒𝑟 𝑖𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑡𝑜 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑝

. 𝑏𝑖𝑑

0, 𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑜𝑓𝑓𝑒𝑟 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑡𝑜 𝑎𝑛𝑦 𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑢𝑦𝑒𝑟 𝑏𝑖𝑑

Thus, the input of the matching algorithm is represented by a set of 𝑁 flexibility offers and 𝑀 flexibility bids

and the output is an instance of the 𝑓𝑚𝑎𝑡𝑐ℎ mapping function that minimize the optimization objective

composed of two components:

• the distance between a 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑝

. 𝑏𝑖𝑑 and the total flexibility offered by the set of matched

flexibility sellers 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑜𝑓𝑓𝑒𝑟

• the total cost of flexibility computed considering the flexibility prices of the selected prosumers

𝐶𝑜𝑠𝑡𝑓𝑙𝑒𝑥

These components are weighted by two factors 𝛼 and 𝛽 having the sum 1, leading to the optimization

objective:

𝑀𝐼𝑁(𝛼 ∗ ∑(𝑑𝑖𝑠𝑡(𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑝

, 𝐹𝑙𝑒𝑥𝑚𝑎𝑡𝑐ℎ
𝑝

)

𝑀

𝑝=1

+ 𝛽 ∗ ∑(𝐶𝑜𝑠𝑡𝑓𝑙𝑒𝑥
𝑝

)

𝑀

𝑝=1

)

The 𝐹𝑙𝑒𝑥𝑚𝑎𝑡𝑐ℎ(𝑘) is computed as the aggregated amount of the flexibility offers of the selected set of

flexibility sellers over the time interval [0. . 𝑇]:

𝐹𝑙𝑒𝑥𝑚𝑎𝑡𝑐ℎ
𝑝 (𝑡) = ∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑝(𝑘) ∗ 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟

𝑘 . 𝑓𝑙𝑒𝑥𝑜𝑓𝑓𝑒𝑟[𝑡]

𝑁

𝑘=1

, ∀ 𝑡 ∈ {0. . 𝑇}

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 20

where 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑝(𝑘) is a binary array constructed for each 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑝

 with the following rule that states that

if the match function 𝑓𝑚𝑎𝑡𝑐ℎ for 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 is 𝑝, meaning that if the sell offer 𝑘 is matched to the bid 𝑝, we

mark in the array on position 𝑘 a value of 1, otherwise we mark 0.

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑝(𝑘) = {
1, 𝑖𝑓 𝑓𝑚𝑎𝑡𝑐ℎ(𝑘) = 𝑝 𝑓𝑜𝑟 𝑓𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟

𝑘 . 𝑜𝑓𝑓𝑒𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The flexibility cost objective for matching a specific bid 𝑝 is computed as the sum of the unit prices asked by

the selected flexibility offers multiplied with the flexibility amount offered.

𝐶𝑜𝑠𝑡𝑓𝑙𝑒𝑥
𝑝 (𝑡) = ∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑝(𝑘) ∗ 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟

𝑘 . 𝑓𝑙𝑒𝑥𝑜𝑓𝑓𝑒𝑟[𝑡] ∗ 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑝𝑟𝑖𝑐𝑒(𝑡)

𝑁

𝑘=1

, ∀ 𝑡 ∈ {0. . 𝑇}

Finally, the reference price is computed as the average of the prices asked by the selected flexibility sellers

offers matched for each of the 𝑀 flexibility buyer bids for each timestamp from the time interval [0. . 𝑇]:

𝑃𝑟𝑖𝑐𝑒𝑅𝐸𝐹(𝑇) =
1

𝑀
∗ ∑

1

∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑝(𝑘)𝑁
𝑘=1

∗ ∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑘) ∗ 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑝𝑟𝑖𝑐𝑒(𝑡)

𝑁

𝑘=1

𝑀

𝑝=1

, ∀ 𝑡 ∈ {0. . 𝑇}

Figure 10 presents the price-driven flexibility bids and offers matching problem expressed as a constraint

satisfaction problem.

Inputs: the set of flexibility offers and flexibility bids from a session 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑜𝑓𝑓𝑒𝑟[𝑇][𝑁], 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟

𝑘 . 𝑏𝑖𝑑[𝑇][𝑀]

Outputs: the matched flexibility offers to the corresponding bids 𝑓𝑚𝑎𝑡𝑐ℎ, the flexibility reference price 𝑃𝑟𝑖𝑐𝑒𝑅𝐸𝐹[𝑇]

Objective: Determine the matching function 𝑓𝑚𝑎𝑡𝑐ℎ such that

𝑀𝐼𝑁(𝛼 ∗ ∑(𝑑𝑖𝑠𝑡(𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑝

, 𝐹𝑙𝑒𝑥𝑚𝑎𝑡𝑐ℎ
𝑝

)

𝑀

𝑝=1

+ 𝛽 ∗ ∑(𝐶𝑜𝑠𝑡𝑓𝑙𝑒𝑥
𝑝

)

𝑀

𝑝=1

)

With the following constraints expressed as equations:

 C1: 𝐹𝑙𝑒𝑥𝑚𝑎𝑡𝑐ℎ
𝑝 (𝑡) = ∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑝(𝑘) ∗ 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟

𝑘 . 𝑓𝑙𝑒𝑥𝑜𝑓𝑓𝑒𝑟[𝑡]𝑁
𝑘=1 , ∀ 𝑡 ∈ {0. . 𝑇}

C2: 𝐶𝑜𝑠𝑡𝑓𝑙𝑒𝑥
𝑝 (𝑡) = ∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑝(𝑘) ∗ 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟

𝑘 . 𝑓𝑙𝑒𝑥𝑜𝑓𝑓𝑒𝑟[𝑡] ∗ 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑝𝑟𝑖𝑐𝑒(𝑡)𝑁

𝑘=1 , ∀ 𝑡 ∈ {0. . 𝑇}

 C3: 𝑃𝑟𝑖𝑐𝑒𝑅𝐸𝐹(𝑇) =
1

𝑀
∗ ∑

1

∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑝(𝑘)𝑁
𝑘=1

∗ ∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑘) ∗ 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑝𝑟𝑖𝑐𝑒(𝑡)𝑁

𝑘=1
𝑀
𝑝=1 , ∀ 𝑡 ∈ {0. . 𝑇}

And the following constraints expressed as inequalities:

 C5: 𝐶𝑜𝑠𝑡𝑓𝑙𝑒𝑥
𝑝 (𝑡) < 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟

𝑝
. 𝐹𝑙𝑒𝑥𝑃𝑟𝑖𝑐𝑒(𝑡), ∀ 𝑡 ∈ {0. . 𝑇}, 𝑘 ∈ {1. . 𝑀}

Figure 10. Optimization problem of matching flexibility bids and offers

The optimization problem defined in Figure 10 for the flexibility matching algorithm is classified as a

mathematical program of class mixed integer nonlinear program (MINLP), having both integer and continuous

unknowns. This class of problems is known to be NP-hard [2], thus no polynomial deterministic algorithm can

be used to determine a solution. Furthermore, the optimization problem can also be reduced to the well-

known bin-packing problem [3], namely the Vector Bin Packing problem [4], that is also NP-hard.

Thus, we propose a solution for solving the optimal flexibility matching problem that uses a greedy heuristic

that is derived from the best fit approximation algorithm used for bin-packing. It is derived from the Next Fit

Decreasing Height algorithm [3] and used to determine an approximate solution for multidimensional packing

problems. It has as inputs the list of 𝑁 flexibility offers and 𝑀 flexibility bids that have to be matched, and as

output the mapping function 𝑓𝑚𝑎𝑡𝑐ℎ that optimal matches considering the defined energy and price

constraints and optimization objective as well as the reference price of the matching solution computed as

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 21

an average of the selected offers prices (see Figure 11Figure 11. Greedy heuristic for flexibility bids offers

matching problem).

Inputs: the set of flexibility offers and flexibility bids from a session 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑜𝑓𝑓𝑒𝑟[𝑇][𝑁], 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟

𝑝
. 𝑏𝑖𝑑[𝑇][𝑀]

Outputs: the matched flexibility offers to the corresponding bids 𝑓𝑚𝑎𝑡𝑐ℎ, the flexibility reference price 𝑃𝑟𝑖𝑐𝑒𝑅𝐸𝐹[𝑇]

Begin

1. Foreach 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑝

. 𝑏𝑖𝑑 in 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑝

. 𝑏𝑖𝑑[𝑇][𝑀] do

2. Compute total flexibility bid cost for 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑝

. 𝑏𝑖𝑑 as ∑ 𝑓𝑙𝑒𝑥𝑟𝑒𝑞𝑢𝑒𝑠𝑡[𝑡] ∗ 𝑓𝑙𝑒𝑥𝑃𝑟𝑖𝑐𝑒[𝑡]𝑇
𝑡=1

3. End Foreach

4. Sort descending by total cost the list of 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑝

. 𝑏𝑖𝑑[𝑇][𝑀]

5. Foreach 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑜𝑓𝑓𝑒𝑟 in 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟

𝑘 . 𝑜𝑓𝑓𝑒𝑟[𝑇][𝑁] do

6. Compute total offer price for 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑜𝑓𝑓𝑒𝑟 as ∑ 𝑓𝑙𝑒𝑥𝑜𝑓𝑓𝑒𝑟[𝑡] ∗ 𝑝𝑟𝑖𝑐𝑒[𝑡]𝑇

𝑡=1

7. End Foreach

8. Sort ascending by total price the list of 𝐹𝑙𝑒𝑥𝑠𝑒𝑙𝑙𝑒𝑟
𝑘 . 𝑜𝑓𝑓𝑒𝑟

9. 𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟 = 0, Initialize 𝑓𝑚𝑎𝑡𝑐ℎ with 0

10. Foreach 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑘 . 𝑏𝑖𝑑 in 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟

𝑝
. 𝑏𝑖𝑑[𝑇][𝑀] do

11. While ! 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(𝐹𝑙𝑒𝑥𝑚𝑎𝑡𝑐ℎ
𝑘 , 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟

𝑘 . 𝑏𝑖𝑑) do

12. 𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟 + +;

13. 𝑓𝑚𝑎𝑡𝑐ℎ(𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟) = 𝑘

14. End while

15. End Foreach

16. Compute 𝑃𝑟𝑖𝑐𝑒𝑅𝐸𝐹

17. Return 𝑓𝑚𝑎𝑡𝑐ℎ, 𝑃𝑟𝑖𝑐𝑒𝑅𝐸𝐹[𝑇]

End

Figure 11. Greedy heuristic for flexibility bids offers matching problem

The algorithm starts by computing for each flexibility bid the total flexibility cost as the product of the

flexibility request and the price associated per each flexibility unit by the flexibility buyer (see lines 1-3). Then,

the flexibility bids set submitted in the market session is sorted descending, giving priority to the bids of the

flexibility buyers that have associated the largest sum of money (see line 4). The same computation is done

for the flexibility offers to determine the associated price and the flexibility sellers are sorted ascending giving

priority to the flexibility offers with the smallest price associated (see line 8). The algorithm consists of a for

loop that iterates through the flexibility bids set (see lines 11-14), and for each bids of a flexibility buyer 𝑝 it

determine the subset of matching flexibility offers (line 13), while the 𝐹𝑙𝑒𝑥𝑚𝑎𝑡𝑐ℎ
𝑝

 is not greater than the

𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑝

. 𝑏𝑖𝑑. The operator greater than is constructed according to the following formula and is true only

if all the elements of the first array are greater than the elements of the second array given as argument.

𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(𝐹𝑙𝑒𝑥𝑚𝑎𝑡𝑐ℎ
𝑝

, 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑝

. 𝑏𝑖𝑑)

= {
𝑡𝑟𝑢𝑒, 𝑖𝑓 ∀𝑡 ∈ {1. . 𝑇}, 𝑠. 𝑡. 𝐹𝑙𝑒𝑥𝑚𝑎𝑡𝑐ℎ

𝑝 (𝑡) ≥ 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟
𝑝

. 𝑏𝑖𝑑(𝑡)

𝑓𝑎𝑙𝑠𝑒, 𝑖𝑓 ∃𝑡 ∈ {1. . 𝑇}, 𝑠. 𝑡. 𝐹𝑙𝑒𝑥𝑚𝑎𝑡𝑐ℎ
𝑝 (𝑡) < 𝐹𝑙𝑒𝑥𝑏𝑢𝑦𝑒𝑟

𝑝
. 𝑏𝑖𝑑(𝑡)

The algorithm increments an index that iterates the set of flexibility offers and constructs the mapping 𝑓𝑚𝑎𝑡𝑐ℎ

by assigning the flexibility offer with 𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑒𝑟 the flexibility bid with index 𝑝. Finally, the algorithm

computes the reference price (see line 16).

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 22

3 Price-driven Flexibility Marketplace

In this section, we describe the smart contracts-based implementation of the price-driven flexibility

marketplace which allows the flexibility trading between flexibility providers (i.e. prosumers) and flexibility

requesters (Aggregators or DSO).

Each energy flexibility asset in the micro-grid is enabled to register via smart contracts his flexibility potential

as a flexibility offer in a Price-driven Flexibility Market. Similarly, whenever the flexibility buyers have a certain

request for flexibility, they will place flexibility bids via smart contracts on the flexibility marketplace. All the

bids and offers are registered by the flexibility market contracts, and a flexibility bids/offer matching algorithm

(see the previous section for its description) is run via Oracle-based integration to compute the optimal

solution for matching the sellers and the buyers of flexibility in the grid. The security and correct integration

of the smart contracts with the matching service are ensured by the Oracle entity.

Self-enforcing smart contracts are defined to manage the actual delivery of flexibility (i.e. from the matched

flexibility sellers to the flexibility buyers), associating incentive and penalties rates. For each flexibility seller,

smart contracts are responsible to evaluate the potential differences between the matched flexibility order

and the flexibility actual delivered (i.e. as provided by monitored energy values registered in the distributed

ledger). If relevant deviations (i.e. above 10%) are identified, the smart contracts ensure that the flexibility

sellers are financially responsible for the imbalance created in the grid by their failure to deliver the promised

flexibility.

Five types of smart contracts are involved in Price-driven Flexibility Market operations:

• The market actors’ operations are represented and validated on chain by the flexibility buyer

contracts (representing the DSO, Aggregators or other actors willing to pay for the delivery of

flexibility) and the flexibility seller contract (representing the Prosumers, Aggregator or other actors

willing to sell their flexibility);

• The Flexibility Token contract, as an adaptation of ERC-721 [5] modelling the flexibility as a promise

of an asset to be delivered.

• The Flexibility Market Manager contract that is managing the actors and their rights to participate in

different market sessions, the deposits registered per flexibility bids/offers ensuring financial

responsibility for the actors, and the market sessions opening/closing times.

• The Flexibility Market Session contract is responsible to register and store the published flexibility

bids and offers corresponding to the active session at the time of registering. Furthermore, the

matched flexibility trades are validated, and the correct clearing and settlement are overseen by this

contract.

In Figure 12 the interaction flow among the smart contracts involved in the Price-driven Flexibility

Marketplace is depicted:

• Step 1: The Flexibility Market Session Smart Contract creates and opens a new energy flexibility

trading session for a specific time frame allowing the prosumers to register and publish their

flexibility bids/offers.

• Step 2: The flexibility requesters can publish through their associated flexibility buyer contracts their

flexibility bid for a specific time period. The buyer needs to specify (2a) a flexibility request profile,

specifying the desired quantity of flexibility for each hour interval and the reward offered per unit of

flexibility delivered. Furthermore, the buyer needs to prove that he owns the financial means to

acquire the specified flexibility requested, thus a payment deposit is made in the Flexibility Market

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 23

Manager contract proportional to the requested flexibility. Upon successful validation of the

registered flexibility bid (2b), the Flexibility Market Manager will forward (2c) the bid to the

corresponding market session, while the manager contract will continue to act as a custodian for the

buyer’s deposit until the end of the market session.

Figure 12. Smart contracts interaction flow in the Price Driver Flexibility Market implementation

• Step 3: The flexibility sellers, can publish their flexibility offer through the flexibility seller contract.

The flexibility offer of an actor should be bound by their flexibility potential. The potential of a flexible

entity is determined as the capacity to increase -flexibility above- or decrease -flexibility bellow- their

energy consumption baseline at a given time. Since the asset traded in the Flexibility Market is the

FlexibilityToken, the sellers are required to acquire flexibility tokens proportional to the profile

offered (3a). For acquiring the tokens, a deposit is required by the Flexibility Market Manager

contract (3b) in order to have an insurance of predictive behaviour from the flexibility seller. The

flexibility tokens are generated (3c) and then the sell orders are published in the Flexibility Market

Session (3d).

• Step 4: The Market Session Smart Contract will accept flexibility bids and offers until the end of

session, at which point the matching algorithm will be triggered off-chain through the Oracle. The

matching service will receive the flexibility bids and offers registered during the market session and

will return a list of flexibility trades (matched flexibility bids to flexibility orders).

• Step 5: The flexibility trades resulting from matching the bids and offers published, are validated by

the Market Session Smart Contract and forwarded to the Flexibility Market Manager Contract (5a).

Based on the registered transactions, the transfer of energy token is done from the flexibility sellers

to the flexibility buyers (5b). The flexibility buyers and sellers are updated about the matched profiles

that are then evaluated during near-real time.

• Step 6: The unmatched orders will be forwarded to the Flexibility Market Manager Smart Contract

(6a) who will burn the unused tokens (6b) and will return to each prosumer his initial deposits made

upon registration in steps 2 and 3.

• Step 7: In real time, the monitored energy will be forwarded to the flexibility seller smart contract,

where the deviation is computed between the flexibility order matched and the flexibility delivered

(i.e. computed as the increased/decreased energy monitored towards the baseline value). The

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 24

flexibility delivered will be further reported to the flexibility buyer. According to the registered

flexibility, if a significant deviation (i.e. above 10%) is registered, the flexibility seller is held

accountable and will be required to pay a penalty (8a), otherwise, the seller will be rewarded or his

service corresponding to the prices settled by the price-driven flexibility market matching algorithm

(8b).

The flexibility buyer Contract is responsible for managing the states and the functionality of the actors that

will request flexibility through the Price-driven Flexibility market. Table 2 shows the state variables of the

flexibility buyer smart contract.

Table 2. Flexibility buyer smart contract state variables

State Variables Description

Energy Flexibility Bid The Flexibility Bid registered by the flexibility buyer in the Price-driven

Flexibility Market. An energy demand curve that needs to be followed by one

or a group of flexibility sellers due to energy flexibility shifting.

Flexibility

service

Incentives The incentive offered as a reward for making available the flexibility.

The penalties imposed for noncompliance. Penalties

In Figure 13, a code snippet from the flexibility buyer contract responsible for the registration and validation

of flexibility bids is depicted. The contract requires that the actor signing the published flexibility transaction

also deposits enough tokens to be able to ensure the payments in case the flexibility bid is matched. The

financial deposit and the bid information are forwarded to the Flexibility Market Manager, that is responsible

to process the bid, and redirect it to the corresponding Market Session contract.

Figure 13. Buyer registering a flexibility bid

The flexibility seller contract is responsible to manage the states and the functionality of the actors selling

flexibility in the Price-driven Flexibility market. In Table 3 the state variables of the flexibility seller smart

contract are depicted.

Table 3 Flexibility seller smart contract state variables

State Variable Description

Baseline Energy Profile Regular energy profile of an asset determined based on the average of measured

energy values in the past.

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 25

Below Flexibility Potential Estimated capacity to lower energy consumption due to energy flexibility shifting.

Computed based on the historical energy consumption.

Above Flexibility Potential Estimated capacity to increase energy consumption due to energy flexibility shifting.

Computed based on the historical energy consumption.

Current Energy Profile Monitored energy consumption values of the asset acquired by the IoT smart energy

metering devices

Flexibility Order Profile Flexibility profile resulted after the matching algorithm has run. Injected by the

market session contract into the FlexibilitySeller smart contract and needs to be

followed during delivery time.

Figure 14 shows the smart contracts associated with flexibility buyers and sellers where implemented in the

price-driven flexibility marketplace.

Figure 14. Flexibility buyer and seller smart contract modelled in the flexibility marketplace

The Market Manager and Market Session contracts are implemented in a compatible manner according to

the specification of the eDREAM blockchain platform detailed in D5.2.

The Flexibility Market Session contract will register all the flexibility bids and offers as long as the session is

opened. By the end of the session, the flexibility bids/offers matching algorithm will be triggered. The

matched trades will update the flexibility buyer contract, signalling that the request has been matched, and

the activity of the matched sellers should be registered and evaluated based on the monitored values. The

financial settlement rules will be applied by the flexibility buyer contract, in near-real-time according to the

specification of the eDREAM solution detailed in deliverable “D5.3 - Consensus based techniques for DR

validation and financial settlement”.

Based on the registered flexibility bids from the Flexibility Market Session a flexibility seller can choose to

either decrease or increase his energy consumption, according to his flexibility availability, thus a flexibility

sell offer will be published accordingly, as depicted in Figure 15. Since the seller promises the delivery of

flexibility as asset in the future, the seller should offer a guarantee of good behaviour. Thus, a token creation

deposit is required, proportional to the promised flexibility (see line 7). The guarantee will be returned to the

seller as soon as the real time activity is registered.

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 26

Figure 15. Seller registering a flexibility offer

By the end of the flexibility market session, after the flexibility bids and offers are matched, the flexibility

seller contract will be updated with information about the matched flexibility profile (i.e. the flexibility order)

and the matched flexibility buyer who will evaluate the activity in real time will be provided.

We have adopted the ERC-721 standard for representing the traded energy flexibility assets as non-fungible

tokens in the blockchain system. The specifics of a token instance are specified by different fields in the

TokenMetadata structure. Several adaptations have been made in order to provide a market compatible

representation of the flexibility asset to follow the specification of the eDREAM blockchain platform (see

Figure 16). The Flexibility Market Session Contract enforces the trading rules by allowing the publisher full

management rights over the lifecycle of the bid/offer, being able to update, suspend or re-activate it. The

bids/offers and the flexibility trade structures used by the smart contracts are also presented in Figure 16.

Figure 16 Flexibility Order (i.e. bid or offer) and Flexibility Trade data structure

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 27

4 Blockchain Platform for Micro-Grid Energy Management

The eDREAM blockchain based prototype platform for micro-grid energy management offers a peer-to-peer

energy marketplace, decentralized management and control of flexibility services and a price-driven flexibility

marketplace (see Figure 17).

Figure 17. Energy stakeholder options in the eDREAM blockchain platform for micro-grid energy management

4.1 Peer-to-peer Energy Trading

It allows the energy prosumers to trade energy in a peer-to-peer fashion. The main actors involved in this

process are the energy buyers or sellers (i.e. usually the prosumers) and the market operator.

After login a prosumer login has access to a page displaying relevant information on its forecast energy

production or consumption as well as the reference energy price from the previous market session. All this

information will be used for placing and energy bid for buying energy or an energy offer for selling energy in

the current market session (see Figure 18).

Figure 18. Web page for showing the Prosumer estimated energy profiles and potential bids/offers

After the market session ends, the matching algorithms from Section 2.1 are run and the energy bids and

offers as energy transactions are returned (see Figure 19).

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 28

Figure 19. Energy transaction registered on the blockchain platform

The energy transactions between peers are not yet validated until the actual moment of energy delivery. At

that point the monitored energy values will be used to validate the transactions and the financial settlement

is conducted by delivering the tokens to the wallets of participants in the transaction (see Figure 20).

Figure 20. Energy transaction validation using monitored data and participants accounts settlement

The Energy Market Operator, upon its login, will see all the energy bids and offers registered in a market

session in terms of promised volumes the be traded and associated prices (see Figure 21).

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 29

Figure 21. Energy Market Operator view on energy bids and offers submitted in a market session

In addition, after running the energy bids and offers matching algorithms it can check the matched ones as

trades as well as the calculated reference price for the session (see Figure 22).

Figure 22. Energy Market Operator view matched bids and offers and reference price calculation for a market session

4.2 Decentralized Flexibility Services Management and Control

In the case of decentralized flexibility services management and control, specific web interfaces have been

developed to expose the functionality and facilitate the interaction of the following types of actors such as

DSO, flexibility aggregator and prosumers.

The first actor is the DSO, who - after the login to the platform - checks the forecast energy demand and

production at the level of specific micro-grid and may create a specific flexibility request in case of potential

un-balances are detected. In case the predicted levels on renewable energy generation are above the

consumption, the DSO will ask for energy flexibility shifting in the direction of increasing the energy demand

and consume as much as possible the generated energy locally. If the predicted generation is below the

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 30

consumption, then it may ask for energy flexibility shifting in the direction of lowering the consumption in

specific time windows. Accordingly, the flexibility request is being issued (see Figure 23).

Figure 23. DSO view on micro -grid predicted state and flexibility request generation

After login, the aggregator can see the flexibility request issued by the DSO and will start by investigating how

to aggregate the flexibility of its enrolled prosumers to address the flexibility request and deliver the

aggregated amount. The aggregator may check for the entire portfolio the forecast flexibility availability (i.e.

above and below the regular baseline) as well as spilt for each individual prosumer (see Figure 24).

Figure 24. Aggregator view on the forecast flexibility availability of enrolled prosumers

After running the flexibility request to flexibility order, the aggregator may check the split of the flexibility

request onto flexibility order signals tailored to each individual prosumer flexibility availability (see Figure 25).

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 31

Figure 25. Flexibility request to prosumer flexibility order split

Moreover, during actual flexibility delivery, the aggregator may check the compliance of the enrolled

prosumers to the flexibility order curve based on the actual monitored data assess the potential relevant

deviations in terms of delta +/- energy differences and use this information for the financial settlement of the

flexibility service (see Figure 26).

Figure 26. Flexibility delivery and compliance of the prosumers enrolled with the service

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 32

Finally, a prosumer who is enrolled with the aggregator may check the forecast flexibility availability levels

above and below the baselines as well as the flexibility order signal received from the aggregator (see Figure

27).

 Figure 27. Prosumer view on flexibility availability and aggregator flexibility order signal

During flexibility delivery time the prosumer may check its levels of compliance to the flexibility order signal

based on the actual monitored energy data (see Figure 28).

Figure 28. Prosumer actual flexibility delivery information

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 33

4.3 Price-driven Flexibility Marketplace

In the price-driven flexibility marketplace, we have three types of roles: flexibility sellers (i.e. prosumers or

aggregators), flexibility buyers (DSO, aggregators, etc.) and flexibility market operator.

The flexibility seller may place flexibility offers in the flexibility market session in terms of increasing or

decreasing their energy profile in relation to the baseline (i.e. by shifting energy flexibility). After their

registration they will be shown information from the previous market session relevant in constructing

flexibility sell offers (see Figure 29).

Figure 29. Previous market session flexibility bid / offers volumes and prices

Then the flexibility seller may check their calculated baseline and estimated flexibility availability for the next

day either above or below the baseline. This information is then used for placing flexibility sell offer on the

flexibility market (see Figure 30).

Figure 30. Forecast flexibility availability and sell flexibility offer

At the end of the session, the flexibility seller may visualize the matched energy flexibility transaction stored

in the blockchain platform (see Figure 31).

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 34

Figure 31. Registered flexibility transaction in the blockchain

At the moment of the delivery, the transaction will be validated using the monitored energy data of the

flexibility seller, deviations from the matched flexibility bid curve will be determined as delta +/- energy

differences and the wallets of the flexibility transactions participants will be settled accordingly (see Figure

32).

Figure 32. Monitoring the flexibility delivery and flexibility transaction settlement

Flexibility buyers will follow a very similar interaction flow, but in the case of DSO, for example, other relevant

information will be displayed for supporting the publish of flexibility buy request on the flexibility market (see

Figure 33).

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 35

Figure 33. Relevant information for creating flexibility buy bid displayed for the DSO

At the same time, the flexibility buyer may check the actual delivery of flexibility by the group of flexibility

sellers (i.e. at the level of individual participant and as a whole) that were matched to its flexibility bid request

and use the potential delta +/-energy deviations in the financial statement of the flexibility transaction (see

Figure 34).

Figure 34. Flexibility buyer monitoring the flexibility delivery of matched flexibility sellers

Finally, the market operator may check the total flexibility bids and flexibility offers submitted during a

market session and upon the session end the ones matched as energy flexibility transactions and the

flexibility reference price (see Figure 35).

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 36

Figure 35. Flexibility Market Operator view on energy flexibility bids and offers submitted in a market session as well as on the

matched ones

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 37

5 Conclusion

In this deliverable, we have presented the final version of eDREAM blockchain-based platform for the

management of energy micro-grids. The following management solutions have been implemented and can

be used by various energy stakeholders (i.e. prosumers, aggregators, DSO, etc.): a P2P energy marketplace, a

mechanism for decentralized implementation and control of flexibility services, and a price-driven flexibility

marketplace for decentralized trading of assets flexibility.

in addition to the blockchain platform’s initial version (reported in D5.2), in this deliverable we have presented

the definition, implementation and integration of Demand-Offer matching mechanism for all the

management alternatives offered by the eDREAM blockchain platform. At the same time, we have described

the implementation of the price-driven flexibility marketplace which is leveraging on self-enforcing smart

contracts for allowing the flexibility buyers and the sellers to trade the energy flexibility of various assets.

Finally, we have reported the refinement and implementation details of the web-based interfaces to facilitate

the interaction of the energy stakeholders with the blockchain platform for exploiting the defined energy

management solutions.

The blockchain platform has been tested and validated using the datasets provided by ASM Terni and Kiwi

project pilots, showing its effectiveness in addressing various management problems of the micro-grids (see

also D5.1, D5.2, D5.3, and D5.4). Furthermore, the developed decentralized management solutions,

algorithms and techniques have been validated by the scientific community (i.e. they have been published in

relevant Web of Knowledge Quartile 1 and 2 computer science journals).

eDREAM D5.5 Self-enforcing smart contracts for DR tracking and control V2

 38

References

[1] Partition problem, https://en.wikipedia.org/wiki/Partition_problem

[2] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan, Mixed-Integer Nonlinear

Optimization, Acta Numerica 22 (2013) pp. 1-131, https://doi.org/10.1017/S0962492913000032

[3] Binzhou Xia, Zhiyi Tan, Tighter bounds of the First Fit algorithm for the bin-packing problem, Discrete

Applied Mathematics, Volume 158, Issue 15, 2010, Pages 1668-1675, ISSN 0166-218X,

[4] Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, Prasad Tetali, Approximation and online

algorithms for multidimensional bin packing: A survey, Computer Science Review, Volume 24, 2017,

Pages 63-79, ISSN 1574-0137, https://doi.org/10.1016/j.cosrev.2016.12.001

[5] ERC-721 open standard foe non-fungible tokens on the Ethereum blockchain, http://erc721.org/

https://en.wikipedia.org/wiki/Partition_problem
https://doi.org/10.1017/S0962492913000032
https://doi.org/10.1016/j.cosrev.2016.12.001
http://erc721.org/

