

The eDREAM project is co-founded by the EU’s Horizon 2020 innovation
programme under grant agreement No 774478

DELIVERABLE: D4.6 Load Profiles and customer clusters V2

Authors: Lourdes Gallego, Ugo Stecchi, Javier Gómez

Ref. Ares(2020)2808220 - 29/05/2020

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 2

Imprint
LOAD PROFILES AND CUSTOMER CLUSTERS V2 May 2020

Contractual Date of Delivery to the EC: 31.05.2020

Actual Date of Delivery to the EC: 31.05.2020

Author(s): Lourdes Gallego (ATOS), Ugo Stecchi (ATOS), Javier Gomez (ATOS),
Napoleon Bezas (CERTH), Paraskevas Koukaras (CERTH), Christos
Tjortjis (CERTH), Dimos Ioannidis (CERTH), Giuseppe Mastandrea
(E@W), Luigi D'Oriano (E@W), Giuseppe Rocco Rana (E@W),
Tommaso Bragatto (ASM), Victoria Murcia (KIWI), Carolina
Fernandes (KIWI),

Participant(s): ATOS, E@W, ASM, KIWI, CERTH

Project: enabling new Demand Response Advanced,
 Market oriented and secure technologies,
 solutions and business models (eDREAM)

Work package: WP4 – Next generation DR Services for Aggregators and Customers

Task: 4.2 – Big Data clustering Techniques for load profiling and customer
segmentation

Confidentiality: public

Version: 0.9 for internal peer review

Legal Disclaimer
The project enabling new Demand Response Advanced, Market oriented and secure technologies, solutions and
business models (eDREAM) has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 774478. The sole responsibility for the content of this publication lies with the
authors. It does not necessarily reflect the opinion of the Innovation and Networks Executive Agency (INEA) or the
European Commission (EC). INEA or the EC are not responsible for any use that may be made of the information
contained therein.

Copyright
© <ATOS SPAIN S.A., C. Albarracín, 25, 28037, Madrid (Spain)>. Copies of this publication – also of extracts thereof – may
only be made with reference to the publisher.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 3

Executive Summary
The deliverable D4.6 “Load Profile and Customer Clusters V2” is the second deliverable associated wich task 4.2
“Big Data Clustering techniques for load profiling and customer segmentation”, which main objective is to propose
techniques and methodologies for clustering the profiles of prosumers. This deliverable describes the architecture,
integration, data-flows, techniques and methodologies adopted for the modules that compose the so-called Big
Data Layer: “Load Profiling”, “Big Data Clustering at Multiple Scale” and “Customer Segmentation”; a relevant
portion of the architecture layer “Next Generation Services for Aggregators and Customers”.

This document provides the description of the architecture, integration, methodologies and techniques of the Big
Data Layer components as follows.

Chapter 1: describes the objectives of task 4.6, derived from the work in the previous deliverable 4.2 of the same
task 4.2. Later, a description of the dataset from the Italian Pilot site (ASM) is provided, which will be used
throughout the document. The potential application of the described tools in the other pilot site in U.K (Kiwi
Power) is described as well.

Chapter 2 includes all the elements useful for the integration of T4.2 components into the eDREAM platform; the
development of these components has followed the concepts of the stable and scalable solution described in
deliverable 4.2. The use cases in which the tools will be tested, have been analysed in section 2.1 considering the
interaction of three components with the other modules. The Big Data Layer architecture is described in section
2.2 and 2.3, with comprehensive information of all sub-components and technologies adopted. An important
preliminary activity in big data analysis is the pre-processing, that deals with the quality of data ingested. Section
2.4 provides details of the pre-processing module that oversees filtering and cleaning the data to be processed.
Several techniques have been applied to ASM dataset and for each one of them, graphic results are provided.

The first one of the three modules, the Load Profiling is described in Chapter 3. This component deals with the
organization of data according to different timing. Basically, when a large dataset of energy profiles is considered,
timeseries need to be reconfigured in order to extract information from them. In this case eleven different options
for profiling have been identified, that are generally considered for the customer portfolio characterization (i.e.
from ASM dataset). In this case, the different profiles represent the features for the next clustering module. It is
important to remark options 10 and 11 deal with the organization of data from the “Electricity
consumption/production forecasting” module which calculates baseline and flexibility profiles for the same ASM
dataset.

In Chapter 4 the clustering algorithm is described. It is indeed a combination of three different algorithm that could
work or independently. As a matter of fact, plenty of clustering techniques are today available with different
specifications and performances depending on the dataset and the feature to cluster. In eDREAM and in particular
in Task 4.2 there is the possibility to cluster large datasets for market analysis, that could be required by a service
operator (DSO, Aggregator, Retailer, etc.). This clustering analysis generally considers a high number of
heterogeneous users with several years of data (even with poor granularity). In this case the overall architecture
should be able to treat large volumes of data and extract as many insights as possible. On the other hand, it is
necessary to cluster a different dataset composed by fewer prosumers (sometimes more homogeneous data), but
with higher granularity and in a shorter time. The first clustering is useful for portfolio characterization, market
analysis, offering proper tariffs and planning activities in general, while the second one could be adopted for
intraday or fast response market applications. In this deliverable two different clustering techniques have been
developed for both purposes: Autoencoder (a deep learning technique with high performance in big data
applications) and K-means (a more generic technique for the second case that also provides good scalability). A
third technique DB-Scan has been considered for its complementary features with respect of the K-means. For

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 4

each one of the algorithms, graphic results are depicted; Autoencoder have been used only in one option (the daily
profiles of the whole prosumers portfolio was the only one with enough data), while K-means and DB Scan with
multiple options.

Finally, in Chapter 5 the Customer Segmentation module is described. Based on the clusters previously calculated
by the Big Data Clustering at multiple scale module, this component can be fed with a generic energy user profile
and is able to assign it to the proper cluster, with an accuracy value that confirm the matching between the
customer profile and the cluster overall profile.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 5

Table of Contents
List of Figures .. 6
List of Tables ... 8
List of Acronyms and Abbreviations ... 9
1 Introduction ... 10

1.1 Objective .. 10

1.2 Pilot Sites Application ... 10

1.2.1 Italian Pilot ... 10

1.2.2 UK Pilot .. 12

2 Implementation of a stable and scalable solution .. 12
2.1 Integration in eDREAM Platform .. 14

2.2 Big Data Layer Architecture .. 15

2.3 API for Big Data Layer ... 16

2.4 Software and libraries .. 18

2.5 Pre-processing .. 19

2.5.1 Organize raw data .. 19

2.5.2 Data cleaning ... 20

2.5.3 Filter dataset .. 21

2.5.4 Removing outliers .. 24

2.5.5 Fill missing values ... 27

2.5.6 Normalization ... 30

3 Load Profiling .. 31
4 Big Data Clustering at Multiple Scale ... 34

4.1 Selected clustering algorithms ... 35

4.2 Pre-requisites ... 35

4.2.1 Pre-requisites for K-Means and Autoencoder .. 36

4.2.2 Pre-requisites for DBScan ... 39

4.3 Clustering algorithms and results ... 41

4.3.1 Autoencoder .. 41

4.3.2 K-means ... 43

4.3.3 DBSCAN .. 50

5 Customer Segmentation ... 56
6 Conclusions ... 58
References ... 60

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 6

List of Figures
Figure 1: ASM dataset fields ... 10
Figure 2: Sample of the “scambio” profile for a random prosumer .. 11
Figure 3: Sample of the “prelievo” profile for a random final user ... 12
Figure 4: Example of unit test of .py script in pre-processing tool ... 13
Figure 5: Final result of unit test for the whole Customer Segmentation pipeline 13
Figure 6: Modules interactions described in Use Case 1.6 .. 14
Figure 7: Modules interactions described in Use Case 3.1 .. 15
Figure 8: Big Data Layer Architecture .. 15
Figure 9: User REST API interface of Big Data Layer ... 16
Figure 10: Module for raw data organization .. 20
Figure 11: Data cleaning module ... 20
Figure 12: Monthly consumption of domestic users ... 21
Figure 13: Monthly consumption of other users ... 21
Figure 14: Filtered table of users ... 22
Figure 15: Histogram of total data for all users ... 22
Figure 16: Histogram of Nan data for all users ... 22
Figure 17: Percentage of zero data for all users .. 23
Figure 18: Monthly consumption of domestic accepted users .. 23
Figure 19: Monthly consumption other accepted users ... 24
Figure 20: Sample of four years energy consumption data (blue) and consumption capacity
threshold (yellow) .. 24
Figure 21: Isolation Forest outliers .. 25
Figure 22: Pyculiarity outliers ... 25
Figure 23: Outliers results ... 26
Figure 24: Screenshot of the Pyculiarity expected values ... 27
Figure 25: Sample of missing values in user dataset ... 28
Figure 26: Part of the excel with the missing values in ASM “prelievo” dataset 28
Figure 27: Dataset with one month missing values ... 29
Figure 28: Reconstruct method .. 30
Figure 29: Dataset after applied reconstruct method ... 30
Figure 30: Dataset obtained from option 1 for one user .. 32
Figure 31: User´s dataset organizes based on option 7 .. 33
Figure 32: Final row of the mean option 7 .. 33
Figure 33: screenshot of the API Rest for flexibility request .. 33
Figure 34: Steps of clusterization procedure (source Atos based on (Halkidi, 2001)) 35
Figure 35: Gap Statistic for option 3 “Daily weekend days (Sat – Sun)” ... 37
Figure 36: k-distance graph ... 40

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 7

Figure 37: Autoencoder topology .. 42
Figure 38: Result of option 1 “Daily” ... 43
Figure 39: Results for K-means optimal clusters of option 2 “Daily working days” 45
Figure 40: Results for K-means optimal clusters of option 3 “Daily weekend days” 45
Figure 41: Results for K-means optimal clusters of option 4 “Weekly on hourly base” 46
Figure 42: Results for K-means optimal clusters of option 5 “Weekly on daily base” 47
Figure 43: Results for K-means optimal clusters of option 6 “Summer months on daily base” 47
Figure 44: Results for K-means optimal clusters of option 7 “Fall months on daily base” 48
Figure 45: Results for K-means optimal clusters of option 8 “Winter months on daily base” 48
Figure 46: Results for K-means optimal clusters of option 9 “spring months on daily base” 48
Figure 47: Results of K-means optimal clusters for option 11 “monthly flexibility” 49
Figure 48: Core, border points and outliers (Wikipedia, 2020) ... 50
Figure 49: Process of clusterization with DBSCAN ... 51
Figure 50: Results for DBSCAN optimal clusters of option 2 “Daily working days” 52
Figure 51: Results for DBSCAN optimal clusters of option 3 “Daily weekend days” 52
Figure 52: Results for DBSCAN optimal clusters of option 4 “Weekly on hourly base” 53
Figure 53: Results for DBSCAN optimal clusters of option 5 “Weekly on daily base” 53
Figure 54: Results for DBSCAN optimal clusters of option 6 “Summer months on daily base” 54
Figure 55: Results for DBSCAN optimal clusters of option 7 “Fall months on daily base” 54
Figure 56: Results for DBSCAN optimal clusters of option 8 “Winter months on daily base” 55
Figure 57: Results for DBSCAN optimal clusters of option 9 “spring months on daily base” 55
Figure 58: Neural networks topology .. 57
Figure 59: Neural Networks training ... 58

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 8

List of Tables
Table 1: REST API details of Big Data Layer ... 18
Table 2: Features of load profiling module ... 32
Table 3: Optimal number of clusters for k-means and autoencoder algorithm .. 39
Table 4: Optimal number of clusters for DBSCAN algorithm ... 40
Table 5: Comparison of Silhouette coefficient between the number of clusters of K-Means and DBScan 41
Table 6: Setting parameters in Autoencoder algorithm .. 43
Table 7: Setting parameters in K-means algorithm ... 44
Table 8: Setting parameters in Neural Networks algorithm .. 57

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 9

List of Acronyms and Abbreviations

eDREAM enabling new Demand Response Advanced, Market oriented and secure technologies, solutions and
business models

DBSCan Density Based Scan

DSO Distribution System Operator

ESD Extreme Studentized Deviate test

HP Potential Hired

PCA Principal Component Analysis

POD Point Of Delivery

S-H-ESD Seasonal Hybrid Extreme Studentized Deviate

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 10

1 Introduction

1.1 Objective
The objective of this deliverable is to describe the development of the three modules of the eDREAM architecture
“Load Profiling”, “Big Data Clustering at multiple scale”, and “Customer Segmentation”. Starting from the
information included in Deliverable 4.2, where methodology, procedures, and technologies had been identified, in
this second version of the document the actual development of the three modules is described. In particular, this
document describes the algorithms composing the modules, all the technical details and the choices taken by
developers and the complete operation of the considered tools, taking into account the overall objectives of the
eDREAM platform and the use cases where they are going to be validated. The three software components are
part of the so-called Big Data Layer, a set of tools adopting big data approach for providing added value services
for the eDREAM platform users.

1.2 Pilot Sites Application
This chapter aims to describe the provided historical datasets: where they come from, collected period time,
dataset quality and requirements that must be addressed for being used in order to succeed the objectives of this
deliverable:

1.2.1 Italian Pilot
ASM Terni provides two datasets, collected from smart meters of prosumers and final users in KW/h, coded and
anonymized by alphanumeric unique code as “P_XXXXX”. Datasets are composed by 2 folders named: “Scambio”
and “Prelievo” (Italian words respectively for “Exchange” and “Withdrawal”). Both files are organized with the
following fields represented in Figure 1:

Figure 1: ASM dataset fields

The name of the fields are acronyms hereby described:

• POD: it is the Point of Delivery, the unique code of the supply or exchange assigned by the DSO to a
user

• DHH: datetime interval of the data included in the OH** fields of the same line. The data is written
in the format: yyyymmddhh

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 11

• OH100, OH115, OH130, OH145: refer to the active energy consumed or produced if the POD is
exchanging energy , in the first, second, third and fourth 15 minutes of the time indicated in the DHH
field respectively.

• OH200, OH215, OH230, OH245: refer to the reactive energy consumed or produced if the POD is
exchanging energy , in the first, second, third and fourth 15 minutes of the time indicated in the DHH
field respectively.

As for reactive values, both dataset present null values so this variable will not be taken into account for further
use or analysis.

1.2.1.1 “Scambio” dataset

This dataset consists of exchanged electricity energy records every 15 min for almost 4 years (from May 2015 to
February 2019) from 1229 prosumers. The dataset should record two measures (consumption and generation by
user), but actually, only consumption data are available in the end, , so it is not possible to understand the total
amount of energy generated/consumed for each record.

Looking deeper into the dataset, it seems that most of the records are synthetic measurements, as depicted in
Figure 2. It means that with few real signals from smart meters, it is possible to recreate approximations of the
missing values. This technique could originate recurring patterns in profiles that make the dataset useless for
flexibility or clustering analysis purposes (for the flatness of the curve).

Figure 2: Sample of the “scambio” profile for a random prosumer

1.2.1.2 “Prelievo” dataset

This dataset includes the values of the energy consumed by final users. The data are collected every 15 minutes,
for more than 4 years (from January 2015 to February 2019) from 561 users. As shown in Figure 3, the values of
this dataset present a pointed and seasonal curve with real measurements.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 12

Figure 3: Sample of the “prelievo” profile for a random final user

1.2.2 UK Pilot
Whilst not directly involved in the testing and validation phase of this tool, the U.K. pilot, coordinated by Kiwi
Power, can be a potential user for further applications. Thus, some aspects of this pilot have been considered
during T4.2 activities to allow for replicability and maximization of the impact.

Although the mentioned site (see section 7 of Deliverable D4.2) is not able to provide data aligned with the
requirements for a clustering application, Kiwi Power, as an aggregator, would have access to large volumes of data
with time-wise granularity in the range of minutes. On the other hand, in order to ensure access to different service
markets, it is important to create coalitions of users (i.e. clusters) rapidly. This means the considered application
should be able to detect and gather details in customers profiles patterns with a certain degree of accuracy while
being flexible enough to rapidly respond to large volumes of data. Due to the computational and timing specific
nature of each problem, no single technique could fit all and as so, attempting a unique solution would be
misguided.

For this purpose, it has been decided to have a tool based on a selection of algorithms that jointly have the
necessary characteristics to tackle individual problems and cover as many scenarios as possible. The scalability
constraint has been addressed in D4.2 and in the following section in this document, while the description of the
different adopted algorithms and their activation is included in section 4.

2 Implementation of a stable and scalable solution
This section deals with the implementation strategy of the big data layer and its integration into the eDREAM
platform. According to the methodology defined in the first version of this deliverable (Ref. to D4.2), the big data
layer should accomplish generic requirements in terms of stability and scalability. To achieve these two features, it
was proposed a design strategy based on the so-called 5 V’s: Volume, Velocity, Variety, Veracity and Value (use the
same refs. of D4.2 page 14). So basically, the 5V’s have been adopted during the during the design phase in order
to obtain a scalable and stable solution during the development and integration phase.

Starting from the definition of stability requirements described in the Deliverable 4.2, the operational stability is
somehow ensured by design due to intrinsic characteristic of the eDREAM platform based on microservices
architecture (more information about this in Deliverable 6.1 and Deliverable 6.2). On the other hand, some tests

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 13

have been conducted to check the proper operation of the modules; unit tests, functional tests and integration
tests.

Unit tests have been planned in the Deliverable D6.1 “Concept for Joint Integration and Interconnection”, where
the plan for the integration of the project’s modules into the eDREAM platform is described. In unit test, every
module and every portion of module’s code is tested in isolated way for checking if it works or not. The unit tests
are uploaded into the GitLab repository in accordance to the Continuous Integration (CI) methodology proposed
in Deliverable D6.2. For instance, in following Figure 4 the screenshot of the unit test of a script sample of the load
profiling module (described in section 3) is presented. While in Figure 5 the unit test of the entire pipeline of the
Customer Segmentation module is shown.

Figure 4: Example of unit test of .py script in pre-processing tool

Figure 5: Result of unit test for the whole Customer Segmentation pipeline

Apart from unit tests, functional tests will be conducted during the validation phase (WP7) and Integration tests
are considered in Deliverable 6.2.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 14

The microservice architecture is also advantageous for scalability requirements, because it is possible to scale it
out in several machines, duplicating only specific services (Ref. D4.2). Along with this intrinsic feature, a specific
algorithm for big data clustering have been selected. The Big Data Clustering at multiple scale, the tool devoted to
clustering data from customers, have been designed with the option to select different algorithms according to
the volume of input data. It means that a specific deep learning algorithm with artificial neural network (see section
4.3.1) is activated when a threshold in data volume is overpassed.

2.1 Integration in eDREAM Platform
The integration of the three modules developed in this document into the eDREAM architecture is described in
the deliverable D2.5 (eDREAM H2020 Project) with the latest architectural diagram and the use cases describing
the interaction of these modules with the other ones. In the Use Case 1.6 “Flexibility offering” is involved the Big
Data Clustering at Multiple Scale module, and in Use Case 3.1 “Prosumers Profiling and Clusterization” are involved
Load Profiling, Big Data Clustering at Multiple Scale and Customer Segmentation.

In the Use Case 1.6 (Figure 6) the Big Data Clustering at Multiple scale module, receives a request from the DSS &
DR Strategies Optimization User Interface about a specific subset of prosumers to calculate. This module will send
back the resulting subset of prosumers according to the received request.

Figure 6: Modules interactions described in Use Case 1.6

In the Use Case 3.1 (Figure 7) the Graph Based analytics module sends a request to the Big Data Clustering at
Multiple scale with specific criteria of prosumers’ flexibility categorization. The request is forwarded to the Load
Profiling module that asks flexibility profiles to Electricity Consumption and Production Forecasting module and
extract the flexibility profiles in accordance to the original petition. Those profiles are sent back to the Big Data
Clustering module that calculates the clusters of flexibility and sends the results to the Graph based analytics. In
case of new prosumers to be assessed, it is possible to gather them into the cluster with the most similar profile
through the Customer segmentation module, directly connected to the Big Data Clustering Module.

DSS & DR
Strategies

Optimization UI

Big Data
Clustering...

Electricity
Forecasting Load Profiling

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 15

Figure 7: Modules interactions described in Use Case 3.1

2.2 Big Data Layer Architecture
The three modules of task T4.2 are supposed to work and operate with a strong mutual interaction, and since they
also share some common objectives, they constitute de-facto, a unique element that has been informally called
Big Data Layer. Apart from Load Profiling, Big Data Clustering at Multiple Scale and Customer Segmentation, a pre-
processing tool is also part of the Big Data Layer, since it is necessary for the data processing of the three modules.
Big Data Layer has been already widely described in Deliverable D4.2 and in this document the high-level
architectural scheme is provided as a reminder in Figure 8, for a better comprehension of the tools described in
the following sections.

Figure 8: Big Data Layer Architecture

Graph Based
Analytics

Big Data
Clustering... Load Profiling

Customers
Segmentation

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 16

2.3 API for Big Data Layer
Big Data Layer provides a useful and handy web service designed with an API-Rest, enabling access to the algorithm
serving outcome. API’s resources are associated with : Big Data Clustering at Multiple Scales and Customer
Segmentation modules.

In addition, a swagger interface has been built as an easy way to visualize the main API functionality and test the
resources, as illustrated in Figure 9.

Figure 9: User REST API interface of Big Data Layer

Big Data Clustering at Multiple Scales resource provides the corresponding clusters according to one of the
available options in the Load Profiling module, detailed in section 3. Customer segmentation resource requires
entering the day and username to obtain the belonging cluster. Both End-point URL and parameters are detailed
in the following Table 1, as well as the response obtained.

Big Data Layer – REST API
Big Data Layer at Multiple Scales

Description Through this interface, end users or other modules of eDREAM project are able to access to the
clusters and results of Big Data Layer according the option selected

End-point URL /clustering?option={}&date={}
Parameters option (see section 3, Table 1)

format_time = %Y-%m-%d-%H:%M:%S (only available for option 10)
Allowed HTTP

Methods
GET

Class Type of
GET response

{
 "option":{
 "option_id":"7",
 "details": { "id": "fall",
 "granularity_id": "months",
 }

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 17

 "algorithm_result":[{ algorith_name: "kmeans",
 "clusters”: {
 "num_clusters":"4",
 "details": {
 "num_cluster_0": "304",
 "num_cluster_1": "8",
 "num_cluster_2": "10",
 "num_cluster_3": "26",
 },
 "results": [
 {"cluster": "0",
 "users": [
 "P_008104",
 "P_00E9DF",
 "P_00B401",
 ,
 "P_00D8C9"
]
 },
 {"cluster": "0",
 "users": [
 "P_0092C3",
 "P_00EC6F",
 ...,
 "P_00B211"
]
 },
 {"cluster": "0",
 "users": [
 "P_00A130",
 "P_011BF8",
 ...,
 "P_00B211"
]
 },
 },
 {"cluster": "0",
 "users": [
 "P_00AB21",
 "P_00DEE7",
 ,
 "P_00D7FE"
]
]}
 }
]}
}

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 18

Customer Segmentation
Description Through this interface, final users or other modules of eDREAM project are been able to obtain

the cluster to which the user provided belongs
End-point URL /customer_segmentation?user_id={}&date={}

Parameters user_id: the user identification of which you want to know the cluster to which it belongs
date: values of the selected day

Allowed HTTP
Methods

GET

Class Type of
GET response

{
 "user_id": "P_055FE3"
 "date": "2015-08-17",
 "cluster_belong": 3
}

Table 1: REST API details of Big Data Layer

2.4 Software and libraries
In Deliverable D4.2 a list of libraries has been identified and proposed for tools development; among the
technologies identified this section describes the adopted ones. The main scope of the libraries used in this module
is framed in the machine learning and deep learning fields. In this way we can achieve the goal of deploying and
developing the Big Data Layer as a fully connected and functional platform.

SOFTWARE:

• Python (Python, 2020): is the programming language used to develop all modules that are part of the Big
Data Layer. As reference language for machine learning and deep learning, it also counts with advantages
such as readable and maintainable code, compatible with major platform and systems, robust standard
library, many open source frameworks and tools, fast and easy prototyping algorithms. (Solutions, 2017)

LIBRARIES

• NumPy (NumPy, 2020): is a numerical python library, aimed at scientific computing to perform
mathematical operations on arrays.

• Pandas (Pandas, 2020): is a package that principally works with datasets for processing and analysis,
allowing: load, analyse, manipulate and write.

• Dask (DASK, 2019): Per its official page, “Dask is a flexible library for parallel computing in Python”. It
enables parallelize task of Pandas, Numpy or Scikit-Learn packages. Thus, it can help to optimize and scale
algorithms.

• Scikit-learn (scikit-learn, 2020): is one of the most famous libraries to use for machine learning. It includes
a prebuilt algorithm for classification, regression, clustering, dimensionality reduction, model selection or
preprocessing. This package is used in all Big Data Layer modules providing the algorithms of k-means,
DBSCAN or Isolation Forest among others.

• Tensorflow (TensorFlow, 2020): is the most important library used to create deep learning models. It is
created by Google for fast numerical computing and maintained and released under the Apache 2.0 open

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 19

source license. One of the great advantages is that it can run on single CPU systems, GPUs or mobile
devices as well as in large-scale distributed systems of hundreds of machines. (Brownlee, 2016).

• Pyculiarity (Miller, 2018): is a python library originally developed in R for Twitter's Anomaly Detection.
This package detects anomalies both in time series and in a vector of numerical values from a statistical
standpoint, in the presence of seasonality and an underlying trend.

• Yellowbrick (Yellowbrick, 2019): is a set of diagnostic and visual analysis tools designed to facilitate
machine learning with scikit-learn. It implements a Visualizer to scikit-learn, through an API, enabling to
choose the models, the hyperparameters tuning and creating intuition around feature engineering.

2.5 Pre-processing
This chapter aims to describe all those tasks which cover the pre-processing step, being this a mandatory process,
in order to filter and clean the raw data acquiring quality and consistency for future clustering.

This pre-processing step is a pipeline divided into five subtasks:

- Organize raw data: due to the datasets coming from different resources (prosumers and final users), these
must be organized with a unique structure in order to be homogeneous and manageable

- Data cleaning: this subtask, in essence, deals with the quality of the gathered data carrying out different
techniques (e.g. remove duplicated or delete inconsistent data), in order to obtain consistency and
usability.

- Filter dataset: once the datasets accomplish the quality and consistency objectives, these should be
filtered (i.e. accept only the dataset which counts with a minimum number of points or have a certain
number of null values among others) to obtain good results in the analysis.

- Remove outliers: the presence of outliers in the dataset can distort the analysis, reason because of they
must be removed.

- Fill missing values: the goal of this subtask is to prevent the shortage of data. Firstly, it analyses the cases
where it is required or if otherwise, the missing values can be omitted due to its size.

- Normalization: the variety of scales among the initial data sets require the normalization in order to obtain
their consumption pattern.

As aforementioned, the module developed for this task can receive the input dataset from the modules of
“Electricity Consumption/Production Forecasting”, “Baseline Flexibility Estimation” and historical data (ASM
“prelievo” dataset) depending on the user’s choice. According to the needs of each input source there are different
workflows of subtask. For ASM “prelievo” dataset all the subtasks are performed due to the historical data had not
been pre-processed previously, contrary to Forecasting and Flexibility modules where only required to organize
the data to have the same feeding structure for clustering module.

In the next subsections, all subtasks are described in detail applying examples of historical data.

2.5.1 Organize raw data
This task aims to organize the raw data from ASM “prelievo” dataset, improving readability and homogenizing the
data. To this objective, the initial txt file, presented in Figure 1 is filtered by user and the hour values of each row

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 20

are harmonized into a data-frame as time series (2-dimensional labelled data structure with columns, (Pandas,
2014) as shown in Figure 10.

Figure 10: Module for raw data organization

2.5.2 Data cleaning
Once the dataset has been organized, different techniques have been applied to obtain consistency and usability:

1. Set index datetime: because the Pandas´ library is used, the set data-frame index with timestamp allows
an agile manipulation;

2. Remove duplicates: having duplicates can lead to wrong analysis when the data pass through the
algorithm;

3. Resample by 15 min: this technique allows to fill any gap that there might be, introducing a timestamp if
it lacks and applying NaN (Not a Number) to the value;

4. Delete spring clock change: remove the values that belongs to the clock change hour (02:00:00 ->
03:00:00)

Finally, this module saves each user data-frame into csv files as shown in Figure 11.

Figure 11: Data cleaning step output

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 21

Initially txt file counts with 561 users, but after applying organize raw data and data cleaning, four users are deleted
due to the impossibility of reorganizing their data. So, the final users to use are 557.

• Domestic users: 105

• Other users: 452

Since 6kW is the upper limit of power capacity (with +10% of tolerance) for domestic users, we use this threshold
to separate domestic customers from other ones. Basically, we assume as domestic user any profile with an hourly
consumption lower than 6,6 kWh.

Below, Figure 12 and Figure 13 illustrate both domestic and other monthly consumption.

Figure 12: Monthly consumption of domestic users

Figure 13: Monthly consumption of other users

2.5.3 Filter dataset
This subtask aims to filter the users, (i.e. accept or exclude), according to several criteria, to obtain good results in
the clustering.

At this end, subtask provides an excel file, which lookss as shown in Figure 14, where each row belongs to one user
describing : the initial and end datetime period of its records, the total records that it has, number of NaN values,
which type of user is, (i.e. domestic or other), number of valid data, valid data greater than 60, which refers to the
first criterion, number of zero data and its percentage, second criterion and the final column, that describes if the
user finally is accepted or excluded.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 22

Figure 14: Filtered table of users

Analysing in more details, the table, the following conclusions can be drawn:

• 452 users belong to “other”

• 105 users are “domestic”

• 355 users count with all records, values between 01-January to 28-February (145904 values, this includes
NaN, zero and valid data) as depicted in Figure 15.

Figure 15: Histogram of total data for all users

- The following histogram of NaN values, Figure 16, shows a relevant quantity of null data (record = NaN,

i.e. empty or none), but only 15 users have more than 5000 nan values so in this case, it is decided not to
set a filter.

Figure 16: Histogram of Nan data for all users

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 23

- As in the previous case, through the analysis of the percentage of zero values in all the dataset (Figure 17),
it seems that the quantity is also relevant, so it is decided to set a filter.

Figure 17: Percentage of zero data for all users

The choice to set the following filters, is based mostly on the previous results and on the fact that for the
characterization of flexibility in the customer portfolio the value should be as lower as possible; allowing the
acceptance of the largest number of users. That said, to accept one user, it must accomplish the following criteria:

1. 𝑣𝑎𝑙𝑖𝑑	𝑑𝑎𝑡𝑎	 ≥ 87542	𝑣𝑎𝑙𝑢𝑒𝑠: understanding as valid data, those values different than NaN (i.e. empty or
none), and being at least the 60% of the total records per user (from January 2015 to February 2019 =
145904 * 0,6 = 87542 records)

2. 𝑧𝑒𝑟𝑜	𝑑𝑎𝑡𝑎	 ≤ 30%: if its valid data: being zero data those records equal to 0

After filtering all the users with those criteria:

• 2 “domestic” users are accepted

• 347 “other” users are being accepted

So that 349 users are accepted, representing 62.65% of the total users (557). For these users the remove outliers
and fill missing values modules are applied. Hereafter, Figure 18 and Figure 19 depict the monthly consumption of
domestic and other users respectively.

Figure 18: Monthly consumption of domestic accepted users

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 24

Figure 19: Monthly consumption other accepted users

2.5.4 Removing outliers
The presence of anomalies in the dataset can affect the analysis and further clustering; so that they must be
removed or replaced. Three techniques are applied: threshold, Isolation Forest and Pyculiarity algorithms.

1. Threshold: this technique replaces all records which exceed the contractual power, by the user (maximum
hourly consumption hired) to its value contracted value;

Figure 20: Sample of four years energy consumption data (blue) and consumption capacity threshold (yellow)

2. Isolation Forest: is an unsupervised learning algorithm based on Decision Tree for anomaly detection that
uses an ensemble of Isolation Trees for the given data points.

Isolation Forest algorithm (K, 2020) selects randomly a characteristic from the available ones from the
given data set and isolates the outliers. Subsequently, it selects a value, also randomly, from the maximum
and minimum values of that previously selected characteristic. The anomalous points when producing
shorter routes allow them to be distinguished from the rest of the data, which generate longer routes.

To use this technique two parameters must be set (Scikit-learn, 2019):

• max_samples: the number used to train the algorithm. Because all the users having more than
87542 records, it is set as 90000.

• contamination: the number of outliers in the dataset. This parameter has been set as 0.1 which
represents that the maximum number of outliers are being 10% of the total dataset

The output is an array with the same length as the dataset, with two values: “-1” corresponding to outliers,
depicted with red circles in Figure 21, and “1” corresponding to normal data, blue line.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 25

Figure 21: Isolation Forest outliers

3. Pyculiarity: (Miller, 2018) is a technique for anomaly detection which uses the seasonal hybrid ESD Test
in order to detect anomalies in seasonal univariate time series, where the input is a series of <timestamp,
value> pairs. Its advantage is not only to detect the anomalies but also estimate the expected value. As
well as in Isolation forest algorithm, two parameters must be set

• alpha: set to 0.05 is the level of statistical significance with which to accept or reject anomalies.
• max_anoms: maximum number of anomalies that S-H-ESD will detect as a percentage of the data.

This parameter has been set as 0.1 which represents the maximum number of outliers are 10%
of the total dataset.

Figure 22: Pyculiarity outliers

Both Isolation Forest and Pyculiarity search up to a maximum of 10% of outliers in the dataset. Therefore, only
those outliers (red points in Figure 21 and Figure 22) that are presented in both methods will to be turned into
the offered Pyculiarity expected value.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 26

Figure 23: Outliers results

Figure 23 depicts the two mentioned methods, Pyculiarity in red squares and Isolation Forest in black points.
Pyculiarity obtains less points because it considers the stationarity and seasonality, while Isolation Forest does not
consider those two parameters; thus it provides many outliers. The proposed method for adjusting the outlier’s
values is illustrated in detail inside the red circle: these three points (yellow line) are considered as outliers by
Pyculiarity and Isolation Forest so the values turned into the expected Pyculiarity values (light purple lines) and
numerically represented in Figure 24.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 27

Figure 24: Screenshot of Pyculiarity expected values

2.5.5 Fill missing values
Sometimes the gathered data has gaps or is incomplete, as shown in Figure 25, due to multiple factors e.g. no
connection with smart meter during a period, sensor malfunctions among others, which can lead to errors in
estimations, distortion of the analysis or invalid conclusions. Therefore, the goal of this subtask is to fill these gaps
carrying out a process of reconstruction.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 28

Figure 25: Sample of missing values in user dataset

The documentation in the field is so wide, with some techniques like replace missing data with an impossible value,
data imputation (e.g. mean, median, mode, interpolation or imputation) or rolling. Considering the data is a date
time, methods like mean or median are not applicable because they don´t take into account the seasonality or
stationarity (El-Nesr, 2018).

Considering the previous paragraph, the procedure for filling the missing values is:

1. Create an excel file that collects the prosumers with missing values. This file provides, by columns, the
prosumer name; by index, when its missing period starts, and the values represent how many consecutive
missing values it has. Figure 26 shows a sample extract of this excel file.

Figure 26: Part of the excel with the missing values in ASM “prelievo” dataset

2. Two techniques are applied depending on the number of missing values. Interpolation methods for
missing values´ gaps equal or less than 96 points and the reconstruct method for gaps greater than 96
points (24 hours * 15minutes sampling = 96 records).

0

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 29

• Interpolation methods (between 0-96 missing values): for gaps up to 4 points the nearest
interpolation method is used (pandas, 2014), while for more points (4 to 96 missing gaps)
slinear (a first order spline linear interpolation) method is applied (pandas, 2014).

Both methods have been selected after testing other ones as: cubic, spline, akima or
polynomial (orders 3, 4 and 5) obtaining lower accuracy.

• Reconstruct method (more than 96 missing values): this method applies when these two
conditions occur as shown in Figure 27:

o 1) the prosumer should have a gap with more than 96 missing values and

o 2) there must be equal or more than 15 prosumers with the same number of missing
values for the same date time;

As it can be seen in the partial excel, Figure 26, the two conditions appear in the remarked
box, for all the prosumers with 2976 missing values at datetime 2016-05-01 00:00:00. This
method works as follow for each prosumer:

Figure 27: Dataset with one month missing values

o First it calculates the trend of the missing values. The trend is determined by drawing

a line (ascending or descending) between the average of the last full day and the next
available full day (Figure 28). Understanding the average of the last full day as the
calculation of the mean of the full day (24-hour average * 4 points / hour = 96 points)
before the missing value period. If this day is not complete (96 points), the algorithm
searches in previous days, until finding a complete one. The last full day of the trend
should contain 96 points after missing values period.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 30

Figure 28: Reconstruct method

o Then, it collects same missing values period with the two previous and subsequent
weeks in the remaining available years. Afterwards, the difference between the
weeks available and the drawn line is calculated. The week with the smallest result,
that is, the value closest to the line, will be selected. Finally, the difference between
the selected week and the line is completed until reaching the latter. Results of the
filled gap are shown in Figure 29.

Figure 29: Dataset after applied reconstruct method

2.5.6 Normalization
One of the objectives of this deliverable is to cluster the users based on their consumption profiles and
consumption patterns. Understanding, as consumption profiles, how much energy the users consume and as
consumption patterns when users consume more (ups and downs along short periods of time).

To do so, the datasets collected (raw data) represent the user's consumption, so they must be treated, applying a
normalization to obtain the consumption patterns and consumption profiles.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 31

Minmax Scaler (Scikit learn, 2019) is the method which allows to make this treatment. It takes the dataset and
scales the values in range [0-1]. This means, that the highest measurement of the dataset is transformed to 1 and
the lowest to 0; the transformation is given by Equation 1 and calculated as Equation 2.

𝑋!"# =	
(&'	&!"#(%&'()*))

(&!,-(%&'()*)	'	&!"#(%&'()*))
 ; 𝑋!"#$%& =	𝑋!'& 	 ∗ (𝑚𝑎𝑥 −𝑚𝑖𝑛) + 	𝑚𝑖𝑛

Equation 1: MinMaxScaler transformation

𝑋!)*+,# = 𝑠𝑐𝑎𝑙𝑒 ∗ 𝑋 + min	 −		 𝑋-./(*01!23) ∗ 𝑠𝑐𝑎𝑙𝑒			

	𝑤ℎ𝑒𝑟𝑒		𝑠𝑐𝑎𝑙𝑒 = 	 ((-45'	-./)		
(&!,-(%&'()*)	'	&!"#(%&'()*))

Equation 2: MinMaxScaler calculations

Although standardization is considered as a pre-processing method, in this case, it will be applied as a previous
step to the clustering algorithms since the pattern or profile portfolio of the dataset is given by the selected
option in Load Profiling module.

3 Load Profiling
Load Profiling is the first module of Big Data Layer which aims to categorize the prosumers according to a series of
features. It ingests the data coming from the pre-processing module or Electricity Consumption and Production
Forecasting module, afterwards categorize the dataset and finally it ingests them in Big Data Clustering at Multiple
Scale module.

The considered features have been selected from biography (Yassine, 2018), (Torabi, Hashemi, Saybani,
Shamshirband, & Mosavi, 2018), previous deliverable 4.2 and the knowledge field.

Following

Table 2 exposes the selected features:

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 32

Option Feature description Granularity data Length of data
(number of values)

1 Daily 15 min 96

2 Daily working days (Mon – Fri) 15 min (mean) 480

3 Daily weekend days (Sat – Sun) 15 min (mean) 192

4 Weekly on hourly base (Mon – Sun) 1h (mean) 168

5 Weekly on daily base (Mon – Sun) Daily (mean) 7

6 Summer months on daily base (Jun-Jul-Aug) Daily (mean) 92

7 Fall months on daily base (Sep-Oct-Nov) Daily (mean) 91

8 Winter months on daily basis (Dec-Jan-Feb) Daily (mean) 90

9 Spring months on daily basis (Mar-Apr-May) Daily (mean) 92

10 Flexibility working days on daily base 1h 672

11 Monthly Flexibility 1h 1

Table 2: Features of load profiling module

This module allows selecting an option, among those available in Table 2, according to which the clustering will be
carried out. It works as follows:

1. If the selected option is among 1-9, Load Profiling receives the pre-processed data from the historical
dataset of ASM, but when option 10 or 11 are selected, data are provided by “Electricity Consumption and
Production Forecasting” module. This module calculates the baseline and flexibility of the ASM customers;
thus, it is possible to profile the day-ahead flexibility with a 1-hour granularity.

2. Below paragraphs describe how the dataset is treated based on the option:

a. Option 1: the final dataset is the concatenation of all days of every user, that allows to obtain a
dataset with more than 450.000 rows. Figure 30 depicts partially one user dataset when option
1 is selected.

Figure 30: Dataset obtained from option 1 for one user

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 33

b. In options 2 to 9: these files calculate the mean in accordance with the option description. This
enables to get a single row per user, with a total dataset of 348 rows, the same number of users
obtained from the pre-processed module. Figure 31 shows how the data per user is organized
based on the selected option; while Figure 32 illustrates the mean used to form the final dataset
file.

Figure 31: User´s dataset organizes based on option 7

Figure 32: Final row of the mean option 7

c. Options 10 and 11: these options validate the use case 3.1, where the Load Profiling module asks
the flexibility profiles to Electricity Consumption and Production Forecasting module. Thanks to
these two options it is possible to extract the profiles of flexibility from customers, therefore the
clustering tool will be able to group the users not only for the energy they consume, but also for
the flexibility they can potentially provide. This way allows to achieve a more granular and
accurate response, than adopting the features from section 5.1 of Deliverable D4.2, which is
estimating the flexibility indirectly from common consumption data. The “Electricity
Consumption and Production Forecasting module calculates and exposes the values of flexibility
(thanks to external tool for Baseline Estimation) for each one of the customers of the Italian pilot
site. The requests are done through an API Rest (See D3.1 “Electricity production/consumption
forecasting techniques and tool V1, section 4.3), as shown in Figure 33, customizing the
parameters in accordance to the option.

Figure 33: Screenshot of the API Rest for flexibility request

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 34

The output of the module is, in all cases, a dataset with a different number of rows and columns; an element that
directly affects the selection of the clustering algorithm and the treatment required, as will be seen in the next
chapter.

As mentioned in paragraph 2.5.6, once the final dataset is obtained a normalization step is mandatory in order to
obtain the consumption patterns and consumption profiles:

• Options 1-5 (daily and weekly options) are normalized with minmax scaled by row in order to cluster the
pattern consumption of the profiles. The resulted clusters are independently of how much energy they
consume, visualizing when they consume along the period time (ups and downs).

• Options 6-9 (monthly options) are scaled by row. In these cases, the clustering considers how much energy
the users consume to face the flexibility and demand response modules.

4 Big Data Clustering at Multiple Scale
Big Data Clustering at Multiple Scale is the core module of Big Data Layer and therefore of task 4.2. This analytic
tool offers the valuable information on the clustering process to the operators enabling them to characterize their
portfolio; since it helps in decision-making for flexibility management and assesses the participation of prosumers
in the electricity market.

According to deliverable 4.2 chapter 5 (p. 33) “The overall clusterization process is divided into five steps, as Figure
34 illustrates. The pre-processing step, filtering and cleaning the initially collected data, becomes essential for
clustering algorithms (revise chapter 2.4 for more details). The second step deals with attribute selections, where
the proper feature must be defined to extract valuable information from clusterization. In the third step, one out
of the three developed clustering algorithms must be chosen according to pre-requisites. After the calculation,
obtained results must be validated through different metrics. Finally, when information is already available and
validated, the operators can interpret the results and extract the knowledge of the portfolio”.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 35

Figure 34: Steps of clusterization procedure (source Atos based on (Halkidi, 2001))

4.1 Selected clustering algorithms
The algorithms, which finally have been selected, considering those describes in Deliverable 4.2, section 5.2, are
K-means, DBSCAN and Deep Embedded Clustering (Autoencoder+ K-means) due to the following reasons:

- Both K-means and DBSCAN need only set one parameter to work. Both are scalable and perform well for
a large number of examples and a medium number of clusters and employ a (metric) geometry of point
distances (Scikit-learn, 2019).

- Deep Embedded Clustering (Autoencoder+ K-means): this algorithm, although must set many parameters
as hidden layers, batch size, epochs or number of clusters, allows to reduce the dimensionality and noise,
keeping most of the information into the decoder layers. Another reason why this algorithm has been
selected is that its training is automatic with sample data, maintaining good performance in similar types
of input, without the need to generalize.

The following paragraphs describe the algorithms, how they work, and which parameters are required.

4.2 Pre-requisites
The goal of this section is to define in detail the initial parameters required by the three algorithms in the tool. K-
means and Autoencoder need to be initialized with the number of clusters, so different indices are considered to
find the optimal number.

DBScan needs no number of clusters, but a couple of parameters for the initialization hereby described.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 36

4.2.1 Pre-requisites for K-Means and Autoencoder
Both K-means and Deep Embedded Clustering (Autoencoder+ K-means) techniques requires the following two
actions before being executed:

• Size of data: unlike K-means or DBSCAN algorithms that can achieve good results with not many records,
Autoencoder requires a large amount of records to train. Considering scalability requirements described
in Section 2, Autoencoder provides the necessary capacity to manage big data, but, on the other hand, it
is not precise with a small dataset.

In particular, after tests conducted for ASM pilot site, with a limited number of customers in the dataset
and the amount of data per customer, this algorithm can only be used when “option 1” in Table 2 is
selected; since it offers this large amount of data set, being more than half a million. This value, which has
been empirically selected, has a threshold for the activation of autoencoder; for dataset lesser than half
million points K-means and DBScan show better performances.

• Set the optimal number of clusters (k): set off this parameter is one crucial issue for these clustering
algorithms, since it depends on the method used. Two types of methods are presented:

o Elbow method: (Kassambara, 2018) that tries to optimize the sum of squared distances between
each observation and its closest centroid. This method is performed with the Euclidean distance.

𝑑(𝑝, 𝑞) = 	23(𝑞(− 𝑝())
*

(+,

Equation 3: Euclidean distance

o Gap statistic: (Kassambara, 2018) which compares the total within intra-cluster variation for

different values of k with their expected values under null reference distribution of the data. The
optimal value is the one that maximized the gap statistic.

𝐺𝑎𝑝(𝑘) ≥ 𝐺𝑎𝑝(𝑘 + 1) −	𝑠-.,

Equation 4: Gap Statistic metric

In case above methods give different results, two more scores are applied to achieve the best optimal
number of clusters. (Scikit learn, 2019)

o Silhouette coefficient: calculates the mean ratio of intra-cluster and nearest-cluster distance. It

presents an advantage, since the separation distance between the resulting clusters is in a range
of [-1,1]; being “-1” when the distances between clusters are near or even overlapped and “1”
when the distances between centroids are so distance.

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 	
(𝑏 − 𝑎)
max(𝑎, 𝑏)

𝑎 = 𝑚𝑒𝑎𝑛	𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒; 						𝑏 = 𝑚𝑒𝑎𝑛	𝑛𝑒𝑎𝑟𝑒𝑠𝑡 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Equation 5: Silhouette coefficient

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 37

o Calinski-Harabasz: or variance ratio criterion, is the ratio between the within-cluster dispersion
and the between-cluster dispersion. This score presents a better grouping the higher value
obtained (Liu, 2015)

𝐶𝐻 =	
∑ |𝐶/| 	×

‖𝜇/ − 𝜇‖0
𝐾 − 1

1
/23

∑
∑ ‖𝜇/ − 𝜇‖0
|5!|
/23
𝑁 − 1

1
627

				→ 			
𝑆𝑆8
𝑆𝑆9

	× 	
𝑁 − 𝑘
𝑘 − 1

			

Equation 6: Calinski Harabasz distance

k: represents the number of clusters; N means the total number of observations (data points);
𝐒𝐒𝐖 is the overall within-cluster variance (equivalent to the total within sum of squares); 𝐒𝐒𝐁 is
the overall between-cluster variance.

Considering above requisites, the actions keep up to achieve them are the following:

• Elbow method

Yellowbrick library (Yellowbrick, 2019) provides one module for clustering which not only offers the visualization,
but also provides the optimal number of clusters automatically for the elbow method.

Elbow method has to set a tuple of the possible optimal number of clusters. This range is set as 2-10 and the
algorithm where they are tried is K-means. So, iteratively it calculates the metric for each number in the range and
provide their best scores, numerically and visually.

• Gap statistic

Gap statistic metric (Robert Tibshirani, 2000) is also tried using K-means algorithm and requires setting a range (2-
10), but unlike the above metric, it does not allow obtaining the optimal number of clusters automatically.

In this case, Figure 35 is represented with the obtained values and the elbow must be located visually.

Figure 35: Gap Statistic for option 3 “Daily weekend days (Sat – Sun)”

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 38

Following Table 3 gathers the results from the above methods for all the option of Load Profiling module. Each
option presents two types of dataset from which the number of clusters is obtained:

o Normalized dataset: comes directly from Load Profiling module where the data has been
organized according to the selected option and applied the normalization described in paragraph
2.5.6 to obtain consumption patterns (option 1-5) and consumption profiles (option 6-9). These
datasets get theirs number of clusters depicted in the first line of every option. K-means
algorithm, used to calculate the number of clusters, has the disadvantage that from a certain
number of dimensions (length of data) the number of obtained clusters is constant. A possible

solution is to reduce the dimensionality applying the PCA (Principal Component Analysis)
algorithm; which converts each row of dataset with many columns into a given number of
principal components previously defined; here PCA is set with two components

o PCA dataset: this type of dataset is the result of applying the PCA algorithm to the normalized
dataset; it allows to check if the disadvantage of K-means influences the calculation of the number
of clusters.

As presented in Table 3, both types of data set are applied to Elbow and Gap Statistic methods. This last
one exposes the dimensionality problem, since it does not converge for normalized dataset. This problem
is also shown in option 1 where a large number of data does not accomplish any result. In options 1, 6, 7,
8, and 9 the dimensionality problem does not appear since they accomplish the same number of clusters
both methods and data types. Additionally, Silhouette metric is performed in order how well the clustering
is working on each dataset type.

On the contrary, in the rest of the options where the clusters are different, Silhouette method is applied
first (greater number, better result) and in case of the same results, Calinski-Harabasz method is calculated
(greater number, better number of clusters).

For instance, option 4 achieves five and four clusters for Elbow method with normalized and PCA data
respectively, and three clusters for PCA data with Gap statistic. In this case, the calculation of Silhouette
metric does not enable the selection of the best number due to Elbow and Gap Statistic method for PCA
data get the same value, 0.46. So that Calinski-Harabasz metric is calculated, obtaining a better result for
four number of clusters. These steps allow getting the optimal number of clusters for all option.

Option Data Type Elbow
Gap

Statistic

Silhouette
Coefficient

Calinski-Harabasz Optimal
number of

clusters Elbow
Gap

Statistic
Elbow

Gap
Statistic

1
Normalized 4 - 0.2

4
PCA 4 - 0.4

2
Normalized 5 - 0.22

5
PCA 5 4 0.402 0.397 447.37 430.025

3
Normalized 4 - 0.27 - -

3
PCA 4 3 0.44 0.46 429.498 442.587

4
Normalized 5 - 0.25 - -

4
PCA 4 3 0.46 0.46 504.268 466.079

5 Normalized 4 0.40 3

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 39

PCA 4 3 0.5 0.5 577.18 585.704

6
Normalized 3 -

0.88

3
PCA 3 3

7
Normalized 4 0.67

4
PCA 4 4 0.69

8
Normalized 4 - 0.67

4
PCA 4 4 0.7

9
Normalized 4 - 0.85 -

4
PCA 4 4 0.86

10
Normalized 4 - 0.756

3
PCA 4 3 0.756 0.836

11
Normalized 5 - 0.774

4
PCA 4 4 0.786

Table 3: Optimal number of clusters for k-means and autoencoder algorithm

4.2.2 Pre-requisites for DBScan
On the other hand, DBSCAN requires these two parameters to set (Prado, 2017):

• minPoints: the minimum number of neighbours that a given point should have in order to be identifies as
core point. The general rule is to set:

𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠	 ≥ 𝐷 + 1					𝑤ℎ𝑒𝑟𝑒	𝐷 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠

Equation 7: minPoints parameter for DBSCAN algorithm

As was mentioned in D4.2, “considering the parameter minPoints, a general rule is that it can be derived
from the number of dimensions (D) in the dataset, as minPoints ≥ D+1. Larger values are usually better for
data sets with noise and will form more significant clusters. The minimum value for minPoints must be 3,
but as larger the dataset is, the larger the value of minPoints should be” (Prado, 2017).

• eps: two points are considered as neighbours, if the distance between them is below the threshold
epsilon. The idea of the epsilon parameter is to calculate the average distances of every point to its k
nearest neighbors. Eps is chosen based on the distance using a k-distance graph. (Ivan, 2020)

𝑁(𝑝) = 	 {𝑞	𝑒	𝐷|𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠}

Equation 8: Epsilon neighbourhood of a point

If the epsilon value is too small, the largest part of the dataset will be not clustered. On the other hand, if
the value is too high, clusters will merge, and most of the data points will end up being appointed to the
same class. The decision of eps value should be based on the distance of dataset (k-distance graph could
be used), but in general small eps values are preferable. For that, the k-nearest neighbors´ algorithm is
used to calculate the distance from each point to its k closest neighbors. The value of k will be
specified by the user and corresponds to MinPoints.

These k-distances are plotted in ascending order in order to determine the ‘knee’, which corresponds
to the optimal eps parameter. A knee corresponds to a threshold, where a sharp change occurs along
the k-distance curve. Figure 36 below shows an example of k-distance curve for option 9, where the
optimal value of the epsilon parameter is close to 2.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 40

Figure 36: k-distance graph

Table 4 shows the optimal number of clusters for every option of Load Profiling module, besides the parameters
required for the DBSCAN algorithm: epsilon and the minimum number of neighbours, minPoints, according the
Equation 7 and Silhouette score. On this occasion, only option 2 applies the reduction of dimensionality, with
value two, to the normalized data set.

Option Eps minPoints Optimal number
of clusters

Silhouette
Coefficient

2 3.5 6 5 0.327
3 5 193 2 0.345
4 4.5 169 2 0.400
5 0.6 8 3 0.547
6 2 93 2 0.948
7 2 92 2 0.934
8 1.5 91 2 0.907
9 1.4 93 2 0.948

Table 4: Optimal number of clusters for DBSCAN algorithm

The objective of this Table 5 is to select the best number of clusters for each option of Load Profiling (apart from
option#1, that will be clustered through Autoencoder), based on the results accomplish with K-Means and DBScan
algorithms. It shows the results with the Silhouette index commonly used for comparing both algorithms.

 K-Means DBScan

Option Optimal number
of clusters

Silhouette
Coefficient

Optimal number
of clusters

Silhouette
Coefficient

2 5 0.402 5 0.327
3 3 0.44 2 0.345
4 4 0.46 2 0.400
5 3 0.5 3 0.547
6 3 0.88 2 0.948
7 4 0.69 2 0.934
8 4 0.7 2 0.907
9 4 0.86 2 0.948

eps

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 41

Table 5: Comparison of Silhouette coefficient between the number of clusters of K-Means and DBScan

From this table it is possible to see the different performances of both K-means and DBScan for the optimal number
of clusters. Options 2 and 5 calculate the same number of clusters, while the rest show different numbers; the
Silhouette index can be used for evaluating the quality of this pre-requisite. It seems that K-means shows better
results for options 3 and 6, while DBScan for the others, but it is important to remark that K-means is always
showing a higher level of partitioning compared with DBScan, that is less sensitive to outliers (e.g. it tends to
aggregate more) and it implicitly depends from Eps.

4.3 Clustering algorithms and results
This section provides a deeper description of chosen algorithms; describing deeper how they perform; which
parameters must be set to their proper operation and the architecture or dataflow. Also, it is presented and
discussed the different results of clustering obtained in section 4.2.2 above.

4.3.1 Autoencoder
Autoencoder is a deep learning technique based on artificial neural network. It has been adopted in Big Data
Clustering at Multiple Scales as an alternative to a generic-purpose clustering algorithm (K-means) and providing
scalability to the service.

Improved Deep Embedded Clustering

As stated in (Yin, 2017), the traditional approach to apply deep learning techniques in the clustering tasks is to
create a clustering loss layer. Despite the good results obtained by this method further analysis have revealed that
there is an important drawback on measuring this clustering loss, and it is that the latent space variable which
contains the essential structure of the original dataset. The solution proposed is to keep training to preserve the
latent space variable structure while the clustering layer is trained to reduce the clustering loss.

Neural Network Architecture and Topology

The core of this clustering solution is based on an autoencoder. Autoencoders are neural networks specialized in
extracting the latent space variable for an input and, afterwards, reconstructing the expected output. They are
widely used and present the state-of-the-art results for very different projects: denoising, super resolution,
dimensionality reduction, anomaly detection etc. In the environment of the eDREAM’s project the autoencoder
will be pretrained with the load profiles of different users, it shall compress the input data to extract the latent
variables and reconstruct from those latent variables the original input. Consequently, it produces two outputs the
encoded vector (Latent space array resulting from encoding the original input) and a decoded vector
(Reconstructed array that should be similar to the original input).

After this pretraining phase, the autoencoder has already adjusted their weights to perform a compression and
decompression on the input vector minimizing the loss and keeping the latent space structure. At this point the
custom clustering layer is added to the model as it is shown in the scheme from Figure 37:

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 42

Figure 37: Autoencoder topology

As both, the clustering layer and autoencoder, are trained in parallel the latent space structure shall be preserved
while the clustering loss shall periodically decrease.

This algorithm has outperformed k-means or other for high dimensional arrays as it can reduce the dimensionality
of the problem without losing as much information as the traditional algorithms usually do.

Setting parameters

Autoencoder algorithm is performed with Tensorflow 2.0 (TensorFlow, 2020) and the parameters which must be
set, are described the in following Table 6

Table 6

Parameter Set with Description

dims [1*, 2*, 3*, 4*]
[length_data, 512, 256,

n_clusters]

Dims is an array which contains the required
parameter for the autoencoder (encoder-decoder)
and K-means algorithm

1*= input data shape length_data
Length of data (number of values) per row according
to the selected option (See section 3, Table 1)

2*= first hidden layer 512 Number of nodes in the first hidden layer
3*= second hidden layer 300 Number of nodes in the second hidden layer
4*= number of clusters 1e-4 Number of clusters for K-Means algorithm

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 43

Table 6: Setting parameters in Autoencoder algorithm

Results

This option 1, "Daily every 15 min", shows four optimal numbers of clusters (see Table 2) as shown in Figure 38.
Clusters 0, 2, and 3 have consumption throughout the day, in different ranges; while cluster 1 maintains a
constant consumption, decreasing slightly in the middle of the day and subsequently increasing after 19:00.

Figure 38: Result of option 1 “Daily”

4.3.2 K-means
K-means clustering (Garbade, 2018) (Munnelly, 2017) is an unsupervised learning algorithm, which makes
inferences from the given dataset, using only input vectors. Its objective is to group elements that share similar
characteristics and separate them from those that do not have these characteristics.

Without entering much detail, K-means works as follows: prefixed the number of clusters (k) it randomly selects k
centroids, as starting centroids, in the datasets. Every point, considering point as each user time series array, is
allocated to a cluster based on its nearest centroid. Iteratively, the centroids are recomputed as the mean of all
points assigned to their cluster until the recomputed performance reaches the optimal (i.e. centroids have
stabilized and points no longer switch to different clusters). (Munnelly, 2017)

Some advantage of using K-means algorithm are (Google Developers, 2020):

- Scikit learn (Scikit learn, 2019) library includes k-means++ as method for initialization which tries to choose
good starting clusters, theoretically yielding better results;

- Scales to large data sets;
- Guarantees convergence;

However, K-means presents disadvantages (Google Developers, 2020):

- due to the initial centroids are randomly selected they can provide different results each time it is executed
because its operation is probabilistic;

- number of clusters (k) must be given;

- clustering outliers: centroids can be dragged by outliers, or outliers might get their own cluster instead of
being ignored; reason for the importance of pre-processing;

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 44

- Scaling with the number of dimensions: As the number of dimensions rises, a distance-based similarity
measure converges to a constant value between any given examples. PCA can be a good algorithm for
reducing dimensionality (Google Developers, 2020)

Setting parameters

K-means algorithm is provided by Scikit-learn library (Scikit-learn, 2019) which parameters are set as shown in
Table 7.

Parameter Set with Description

clusters
options of

section 4.2.2
The number of clusters to form as well as the number of centroids
to generate.

Init ‘k-means++’
Method for initialization. ‘k-means++’: selects initial cluster centers
for k-mean clustering in a smart way to speed up convergence.

n_init 10
Number of time the k-means algorithm will be run with different
centroid seeds. The results will be the best output of n_init
consecutive runs in terms of inertia.

max_iter 300
Maximum number of iterations of the k-means algorithm for a
single run

tol 1e-4 Relative tolerance with regards to inertia to declare convergence.
precompute_distances ’auto’. Precompute distances (faster but takes more memory).

random_state None
Determines random number generation for centroid initialization.
Use the global random state from numpy.random

Table 7: Setting parameters in K-means algorithm

Results

The results of the optimal number of cluster with K-means algorithm for options from #2 to #9 of load profiling
(Table 2) are represented in the images below. Figures 39 and 40 correspond respectively to options #2 and #3 for
daily based profiles, figures 41 and 42 correspond to options #4 and #5 for weekly-based profiles and finally figures
from 43 to 45 correspond respectively to option from #6 to #9 for seasonal profiles. Due to the representation of
all the users by cluster would be difficult to visualize, it has been chosen to illustrate the average of every cluster,
which basically corresponds to its cluster centroid in the considered timespan for each option.

Results for option 10 cannot be represented by a graphic since it is only a 1-hour time slot, thus the value of the
energy flexibility for each centroids’ clusters is provided. Finally, option 11 (the flexibility profiles clustered on a
monthly base) is represented in Figure 47.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 45

Option 2: Daily working days (Mon – Fri)

Figure 39: Results for K-means optimal clusters of option 2 “Daily working days”

This option displays five optimal clusters that are cyclically repeated along the week, all working days have the
same consumption pattern:

o Cluster 0: shows a peak in consumption during the morning, around 8: 00-12: 00 am, and a
gradual decrease in the rest of the day;

o Cluster 1: the consumption is divided into two strips, in the morning between 8:00 a.m. and 12:30
p.m., and in the afternoon between 3:00 p.m. and 5:45 p.m.;

o Cluster 2: shows a slight consumption in the morning that increases during the afternoon where
there is a peak from 18:00 to 20:00;

o Cluster 3: maintains a constant consumption throughout the day;
o Cluster 4: unlike the previous ones, this cluster shows consumption only at night and constantly.

• Option 3: Daily weekend days (Sat – Sun)

Figure 40: Results for K-means optimal clusters of option 3 “Daily weekend days”

Weekend´s consumption is divided into three clusters.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 46

o Cluster 0: illustrates a consumption that begins in the afternoon and lasts overnight until early in
the morning

o Cluster 1: shows more consumption on Saturdays than Sundays, reaching almost the double.
o Cluster 2: shows a slight consumption in the morning that increases during the afternoon where

there is a peak from 18:00 to 20:00

• Option 4: Weekly on hourly base (Mon – Sun)

Figure 41: Results for K-means optimal clusters of option 4 “Weekly on hourly base”

This option presents an optimal number of clusters equal to four.

o Cluster 0: maintains a similar consumption except on Thursday, which decreases about a third
o Cluster 1: follows a consumption´s pattern similar to cluster 0 but its decrease occurs on

Wednesday and does not show consumption on Thursday
o Cluster 2: presents a constant pattern throughout the week with consumption peaks during the

night
o Cluster 3: follows a similar pattern of weekly consumption similar to cluster 0, Thursday has an

off-peak

• Option 5: Weekly on daily base (Mon – Sun)

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 47

Figure 42: Results for K-means optimal clusters of option 5 “Weekly on daily base”

This weekly option is the same as option 4 but on a daily basis. The choice of three optimal clusters
agrees somewhat with the analysis carried out in option 4.

o Cluster 0: presents a decrease in consumption for Wednesday reaching its off-peak on Thursday
o Cluster 1: maintains a similar consumption during the week except for a peak on Wednesday and

its gradual decrease during Thursday
o Cluster 2: shows an inverse pattern to cluster 1, with a consumption off-peak on Thursday

The following options depict the optimal number of clusters based on the consumption profile; how
much energy is consumed by the prosumer.

• Option 6: Summer months on daily base (Jun-Jul-Aug)

Figure 43: Results for K-means optimal clusters of option 6 “Summer months on daily base”

• Option 7: Fall months on daily base (Sep-Oct-Nov)

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 48

Figure 44: Results for K-means optimal clusters of option 7 “Fall months on daily base”

• Option 8: Winter months on daily basis (Dec-Jan-Feb)

Figure 45: Results for K-means optimal clusters of option 8 “Winter months on daily base”

• Option 9: Spring months on daily basis (Mar-Apr-May)

Figure 46: Results for K-means optimal clusters of option 9 “spring months on daily base”

Summer is the only season that presents an optimal number of clusters equal to three; the rest obtain four clusters.
Regardless of the number of clusters, a differentiation between prosumers is displayed in all figures; with
prosumers who consume little, others with medium consumption, and finally by large consumers.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 49

Furthermore, Summer and Fall are the seasons with the most stable consumption; while Spring and Winter have
outstanding peaks on specific days.

• Option 10: Flexibility working days on daily base

Option 10 represents the clustering of a specific date and hour of the flexibility profiles. As described in section 3,
the “Electricity Consumption / Production Forecasting” module sends the flexibility values to be clustered. By
choosing this option in the “Load Profiling” module it is possible to select a specific date and time for clustering
the customers portfolio flexibility. Moreover, the “Load Profiling” can separate the positive flexibility (the capacity
to increase the energy consumption with respect to the baseline) and the negative flexibility (the capacity to
reduce the energy profile below the baseline) and cluster them separately. This scenario reflects the events where
an aggregator needs to identify within its pool, a group of prosumers offering a given amount of flexibility for a
specific timeslot. It is basically a simulation of a demand response request, where the aggregator must evaluate
the flexibility capacity of its portfolio. As an example, it has been simulated a request to be received by the
following date and hour: 2019-02-01 14:00:00.

Since the simulated request is for a specific hour, it is not possible to depict the results in a two-dimensional
graphic, therefore the obtained clusters are characterized only for the energy flexibility value. For this specific time
the down boundary of the flexibility (load reduction capacity) is null, so the positive one is the only available.

Three Clusters have been obtained:

Cluster 0 = 0,012 kWh

Cluster 1 = 0,1496 kWh

Cluster 2 = 0,8605 kWh

• Option 11: Monthly Flexibility

Option 11 clusters the flexibility profiles for an entire month. As in the previous options the “Load Profiling” module
will provide the dataset organized ready to be clustered and it also gives the possibility to select which month to
cluster. In the example shown in Figure 47 the month of February 2019 has been clustered and four different
categories of profiles have been identified.

Figure 47: Results of K-means optimal clusters for option 11 “monthly flexibility”

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 50

As in option 10, no negative flexibility values have been calculated, so the customers profiles only have positive
flexibility for increasing their loads. Cluster 0 shows almost no flexibility, Cluster 1 has regular flexibility capacity in
the daytime of working days, Cluster 2 shows irregular spikes along the whole month with a peak concentration in
the final days, and Cluster 3 includes customers with poor flexibility capacity.

4.3.3 DBSCAN
Density-based Spatial Clustering of Applications with noise (DBSCAN) Algorithm

DBSCAN (Ester, Kriegel, Sander, & Xu, 1996) belongs to the category of unsupervised data mining techniques and
more particulary to the category of density-based clustering, hence the name of the algorithm. Essentially, the
algorithm groups various points together, that are close to each other (regions with high density), marking as
outlier those points that appear alone in low-density regions. DBSCAN defines as clusters, groups of dense points.
(eDREAM H2020 Project, 2019)

Algorithm workflow

As described in D4.2, given eps and minPoints categorize the objects into 3 exclusive groups.

• A point is considered as a core point if the corresponded number of points within eps is greater than a
predefined number of points (minPoints)-These are points that are at the interior of a cluster.

• A border point has fewer than minPoints within eps but belongs to the neighborhood of a core point.

• In addition, if there is a path 𝑝#, … , 𝑝$, where 𝑝# = 𝑐𝑜𝑟𝑒	𝑝𝑜𝑖𝑛𝑡 and 𝑝%&# is directly reachable from 𝑝$
results that 𝑝$ is a border point.

• A noise point is any point that is not a core point nor a border point.

As was described in Deliverable 4.2, each core point forms a cluster together with the points that are reachable
within its eps radius. Two points are considered “directly density-reachable” if one of the points is a core point
and the other point is within its ε radius. Larger clusters are formed when directly density-reachable points are
chained together. (Wikipedia, 2020)

Figure 48: Core, border points and outliers (Wikipedia, 2020)

In Figure 48, the number of minPoints is set 4. Thus, point A is considered as a core point as within its area there
are 4 points. B belongs to the neighborhood of core Point A and is considered as a border point, despite that fewer
points are within its area. Last but not least, point N is an outlier. Neither is a neighbor of a core point, nor points
are enough to form a core point.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 51

Unlike some other clustering techniques, DBSCAN does not require all data points to be assigned to a cluster. The
DBSCAN algorithm repeats the following process shown in Figure 49Figure 49 until all points have been assigned
to a cluster or are labeled as visited. Some advantages of DBSCAN are:

• The ability to discover clusters of arbitrary shapes (spherical, elongated, linear) and noise.
• Working with spatial datasets.
• There is no need to predefine the number of clusters.

The minor disadvantage of DBSCAN is that it is sensitive to parameters.

Figure 49: Process of clusterization with DBSCAN

• Option 2: Daily working days (Mon – Fri)

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 52

Figure 50: Results for DBSCAN optimal clusters of option 2 “Daily working days”

Figure 50 illustrates the results of the clustering process based on the energy consumption of working days
(Monday-Friday). Each color line represents a different cluster showing the aggregated mean values of 15-minute
time intervals of the prosumers that were classified into this cluster (different colors). It is evident that the
prosumer dataset is separated into 5 clusters.

• Option 3: Daily weekend days (Sat – Sun)

Figure 51: Results for DBSCAN optimal clusters of option 3 “Daily weekend days”

In Figure 51 two clusters are formed representing different behavior regarding the mean energy consumption of

15-minute time intervals during weekends.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 53

• Option 4: Weekly on hourly base (Mon – Sun)

Figure 52: Results for DBSCAN optimal clusters of option 4 “Weekly on hourly base”

Figure 52 shows the results of the clustering process in hourly time intervals representing the mean energy
consumption throughout the whole week. Two clusters are formed and as it becomes clear, the second cluster
(blue line) shows a significantly lower energy consumption during Wednesday and Thursday compared to the first
cluster (purple line).

• Option 5: Weekly on daily base (Mon – Sun)

Figure 53: Results for DBSCAN optimal clusters of option 5 “Weekly on daily base”

Figure 53 shows the daily average consumption during the week. Prosumers are grouped into 3 clusters. Cluster 1
(yellow line) and cluster 2 (blue line) have an opposite energy behavior, while cluster 0 (purple line) presents a
steady consumption throughout the week.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 54

• Option 6: Summer months on daily base (Jun-Jul-Aug)

Figure 54: Results for DBSCAN optimal clusters of option 6 “Summer months on daily base”

• Option 7: Fall months on daily base (Sep-Oct-Nov)

Figure 55: Results for DBSCAN optimal clusters of option 7 “Fall months on daily base”

• Option 8: Winter months on daily basis (Dec-Jan-Feb)

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 55

Figure 56: Results for DBSCAN optimal clusters of option 8 “Winter months on daily base”

• Option 9: Spring months on daily basis (Mar-Apr-May)

Figure 57: Results for DBSCAN optimal clusters of option 9 “spring months on daily base”

Figure 54, Figure 55, Figure 56 and Figure 57 illustrate the results of the clustering process on the daily average
energy consumption in different seasonal periods (summer, winter, fall, spring). As it is evident in each of the 4
figures, two clusters are formed with a significantly different characteristics in their energy consumption behavior.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 56

5 Customer Segmentation
Customer Segmentation module is the last module of the Big Data Layer, which objective is to identify the
consumption pattern of a new prosumer and allocate it, with high accuracy, to the proper cluster previously
obtained by the “Big Data Clustering at Multiple Scale” module.

The first step in order to achieve the goal is to feed the neural network used by this module. A neural network is a
type of deep learning algorithm, like a graph, that enables to recognize the underlying patterns in a given data set.
This network is characterized by multiple layers of neurons connected to each other, where every layer extract
characteristic from an increasingly higher level, combining relationships until reaching the answer. Deliverable D4.2
describes in details the neural network technologies chosen for the Customer Segmentation module.

Algorithm workflow

Two main advantages of this module are its scalability (similarly to the Autoencoder, the more data the better) and
its versatility. Training this type of algorithm requires much data, thus only the option 1 data set of load profiling
provides this characteristic. This implies that the pattern of the new prosumer must fit the same length as the
dataset used.

The procedure for running this tool is described in the following steps:

• The initial data set enters the neural network, through the input layer. This layer must be set with a number
of neurons equal to the length of the data set, in this case 96 neurons, the length data of option 1 (see
Table 1).

• The information of the input layer neurons feeds the rest of the hidden layers, calculating the weights and
processing in the activation function.

• This process returns values that are sent to the output layer where they are compared to a target. The
target values are the clusters obtained in the big data clusters module.

• Batch size and epoch parameters determine how many times this process is repeated. Both parameters
are critical to the performance of the algorithm. A misallocation can lead to an overfit or underfit.

• Finalizing the iterations, an accuracy is achieved, being able to determine how precise will be the
assignation a new prosumer to one cluster.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 57

Figure 58: Neural networks topology

Setting parameters

As in the previous algorithms, Table 8 shows the parameters set for running the neural network

Parameter Set with Description

dims [1*, 2*, 3*, 4*] [length_data, 32, 16, 4]
Dims is an array which contains the required
parameter for the autoencoder (encoder-decoder)
and k-means algorithm

1*= input data shape 96 Length of data of option 1
2*= first hidden layer 32 Number of nodes in the first hidden layer
3*= second hidden layer 16 Number of nodes in the second hidden layer
4*= number of clusters 4 Number of clusters for K-Means algorithm

epoch 10
One forward pass and one backward pass of all the
training examples

batch size 2048
Number of training examples in one
forward/backward pass.

Table 8: Setting parameters in Neural Networks algorithm

The algorithm training, for option 1, achieves an accuracy close to 0.98, as illustrated in Figure 59; allowing the
inference of the consumption pattern of a new prosumer to be assigned to the correct cluster with a confidence
of 98%.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 58

Figure 59: Neural Networks training

6 Conclusions
This document is the second deliverable of task T4.2 “Big data clustering techniques for load profiling and customer
segmentation” and describes the development of three of the modules of the eDREAM architecture: Load Profiling,
Big Data Clustering at Multiple Scale and Customer Segmentation. These modules, together with the pre-
processing tool compose the Big Data Layer, a portion of the eDREAM architecture devoted to the analysis of large
volume of data. All the development activities and the results presented in this deliverable are based on the
methodology and the technologies previously described in deliverable D4.2, the first output of task T4.2.

The Big Data Layer modules will be tested in the Italian pilot (at the ASM site) and the dataset coming from the
pilot is described. This dataset includes data from the smart meters of 542 final users for approximately 4 years
(2015-2019) with a frequency sampling of 15 minutes. In the first part of this deliverable the Big Data layer
architecture is presented in its final version, with references to its stability and scalability properties. The
connections among all modules have been reported in dedicated diagrams and explained even considering the
following validation activities based on the use cases (use case 1.6 and 3.1 are the ones where these modules are
going to be tested and validated). The results of unit tests have been also reported, with some screenshot showing
the percentage of code coverage (higher than the 80%). Later on, the full documentation of the API has been
included, in order to ensure full accessibility to other modules in the platform. In the last section of this first part,
all the adopted technologies (starting from the ones selected in D4.2) have been listed and described.

In the second part of the deliverable the development of the three modules together with the pre-processing tool
is described. The pre-processing tool is necessary for preparing the data to be injected in Load Profiling. In most
cases raw data from the field need to be cleaned and filtered because in their sampling and acquisition process
many external factors can affect their integrity and veracity. The pilot dataset is characterized by many gaps, nulls,
nans, etc, so it is mandatory to clean the data before extracting any information. All the different steps of the pre-
processing bring to a new dataset with 350 final users. Load Profiling is a tool aimed at organizing the data
according to different options. Data received from pre-processing are basically timeseries organized on a daily base
(each day of the four years includes a sequence of 96 measures of all prosumers). So, it is essential to re-structure
the data matrix in something more useful for extracting insights. Eleven different options have been identified:
each one of them organize the data of each customer in a different timing (daily, working days, season, etc.). The

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 59

first nine options are devoted to the management of historical data, while option 10 and 11 consider the flexibility
data from the “Electricity Consumption/Generation Forecasting”. In this case a potential user of the eDREAM
platform (aggregator, DSO, retailer, etc) can extract information of its portfolio for real time applications (intraday
and day-ahead services as described in other eDREAM documents) and for portfolio characterization (planing,
tariff analysis and in general long-term and off-line operation). In addition to the organization of data with different
eleven options, Load Profiling feeds the Big Data Clustering at multiple Scale module, that is able to cluster the
ASM portfolio according to these eleven features. Three different algorithms have been included in this module:
Autoencoder, K-means and DBScan. Since the eleven features of Load Profiling can produce dataset with different
dimensions and characteristics, each one of the three algorithms can be activated in different conditions.
Autoencoder is a deep learning technique that works better with large volumes of data. Tests on the Italian pilot
have shown a good level of performance with a dataset greater than half million points, which is choosing
feature#1 for ASM dataset). K-means and DBScan can be activated with the rest of the features, but they have
different peculiarities. K-means is a general purpose technique that show good scalability, it is fast enough (good
applicability to short-response applications like intraday market services) , but it needs an optimal value of clusters
previously calculated (see Table 3). On the other hand DBScan needs no pre-calculated optimal number of clusters,
it is pretty numb to outliers, but it requires a couple of parameters to be set (see Table 4). With the three algorithms
combined, the whole tool features great scalability for the most of Big Data applications and enough flexibility to
be applied to different portfolios. Even the optimal number of clusters has been figured out with a script combining
several evaluation indexes (see section 4.2). Graphic results have been depicted for the three algorithms.

Finally, the Customer Segmentation tool features a neural network algorithm able to identify a new or random
customer profile with the cluster previously calculated. Therefore, new customers and prosumers can be added to
an existing portfolio and can be characterized to pre-existent clusters. The new customer profile should be by 96
points data string (according to the structure of the Italian pilot time series). The tool is able to match the customer
profile with the profile of a cluster that is the best fit.; The accuracy of this matching is provided in percentage
(maximum accuracy of 98% has been obtained). Therefore, it can be very helpful when new customers and
prosumers are added to an existing portfolio and they are segmented according to pre-existent clusters. On the
other hand, some customers already included in the clustering process, can be moved from a cluster to another
and check how they fit with the new segment.

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 60

References
Brownlee, J. (2016, May 5). Introduction to the Python Deep Learning Library TensorFlow. Retrieved from

https://machinelearningmastery.com/introduction-python-deep-learning-library-tensorflow/
DASK. (2019). Retrieved from https://dask.org/
eDREAM H2020 Project. (2019, May 31). DELIVERABLE D4.2: LOAD PROFILES AND CUSTOMER CLUSTERS V1.

Retrieved from https://edream-h2020.eu/wp-
content/uploads/2019/07/eDREAM.D4.2.ATOS_.WP4_.V1.0-compressed.pdf

eDREAM H2020 Project. (n.d.). Deliverable D2.5 Requirements-Driven SystemDevelopment V2.
El-Nesr, D. M. (2018, December 31). Imputing the time-series using python. Retrieved from

https://medium.com/@drnesr/filling-gaps-of-a-time-series-using-python-d4bfddd8c460
Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A Density-Based Algorithm for Discovering Clusters. Institute

for Computer Science, University of Munich, 226-231. Retrieved from
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf?source=post_page

Garbade, D. M. (2018, September 12). Understanding K-means Clustering in Machine Learning. Retrieved from
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1

Google Developers. (2020, February 10). k-Means Advantages and Disadvantages. Retrieved from
https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages

Halkidi, M. B. (2001). On clustering Validation Techniques. Journal of Intelligent Information Systems, 104-145.
Ivan, M. (2020). Density-based clustering in R. Retrieved from https://en.proft.me/2017/02/3/density-based-

clustering-r/
K, D. (2020, March 2). Anomaly Detection Using Isolation Forest in Python. Retrieved from

https://blog.paperspace.com/anomaly-detection-isolation-forest/
Kassambara, A. (2018). CLUSTER VALIDATION ESSENTIALS. Retrieved from

https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-
methods/

Lewinson, E. (2018, July 2). Outlier Detection with Isolation Forest. Retrieved from
https://towardsdatascience.com/outlier-detection-with-isolation-forest-3d190448d45e

Ling J, L. D. (2017). Comparison of Clustering Techniques for Residential Energy Behavior using Smart Merter
Data. AAAI-17 (pp. 260-266). San Francisco, CA USA: AAAI Workshops - Artificial Intelligence for Smart
Grids and Buildings,. Retrieved from
https://www.aaai.org/ocs/index.php/WS/AAAIW17/paper/view/15166/14673

Liu, E. (2015, November 6). Calinski-Harabasz Index and Boostrap Evaluation with Clustering Methods. Retrieved
from https://ethen8181.github.io/machine-learning/clustering_old/clustering/clustering.html

Miller, N. S. (2018, August 29). pyculiarity 0.0.7, 2015. Retrieved from https://pypi.org/project/pyculiarity/
Munnelly, G. (2017). K-Means. Retrieved from https://www.scss.tcd.ie/~munnellg/projects/kmeans.html
NumPy. (2020). NumPy. Retrieved from https://numpy.org/devdocs/
Pandas. (2014). Intro to data structures. Retrieved from https://pandas.pydata.org/pandas-

docs/stable/getting_started/dsintro.html
pandas. (2014). pandas.DataFrame.interpolate. Retrieved from https://pandas.pydata.org/pandas-

docs/stable/reference/frame.html
Pandas. (2020). Retrieved from https://pandas.pydata.org/index.html
Prado, K. S. (2017). How DBSCAN works and why should we use it? Retrieved from

https://towardsdatascience.com/how-dbscan-works-and-why-should-i-use-it-443b4a191c80
Python. (2020). Retrieved from https://www.python.org/: https://www.python.org
Robert Tibshirani, G. W. (2000, November). Estimating the number of clusters in a data set via the gap statistic.

411-423. Retrieved from https://statweb.stanford.edu/~gwalther/gap
Scikit learn. (2019). sklearn. metrics. Retrieved from https://scikit-

learn.org/stable/modules/classes.html#module-sklearn.metrics
Scikit learn. (2019). sklearn.preprocessing.MinMaxScaler. Retrieved from https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
Scikit-learn. (2019). 2.3. Clustering. Retrieved from https://scikit-learn.org/stable/modules/clustering.html
Scikit-learn. (2019). sklearn.cluster.KMeans. Retrieved from https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

eDREAM D4.6 Load profiles and customer clusters V2

D4.6 – Load profiles and customer clusters V2 61

Scikit-learn. (2019). sklearn.ensemble.IsolationForest. Retrieved from https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

scikit-learn. (2020, March). scikit-learn. Retrieved from https://scikit-learn.org/stable/
Solutions, M. (2017, October 3). Python: 7 Important Reasons Why You Should Use Python. Retrieved from

https://medium.com/@mindfiresolutions.usa/python-7-important-reasons-why-you-should-use-python-
5801a98a0d0b

TensorFlow. (2020). TensorFlow. Retrieved from https://www.tensorflow.org/
Torabi, M., Hashemi, S., Saybani, M. R., Shamshirband, S., & Mosavi, A. (2018, June 27). A Hybrid clustering and

Classification Technique for Forecasting Short-Term Energy Consumptio. Wiley Online Library, 38(1), 11.
doi:10.1002/12934

Wikipedia. (2020, 3 30). DBSCAN. Retrieved from https://en.wikipedia.org/wiki/DBSCAN
Yassine, S. S. (2018, February 20). Big Data Mining of Energy Time Series for Behavoiral Analytics and Energy

Consumption Forecasting. MDPI, 26. Retrieved from www.mdpi.co/journal/energies
Yellowbrick. (2019). Source code for yellowbrick.cluster.elbow, Revision 682b3528. Retrieved from

https://www.scikit-yb.org/en/latest/_modules/yellowbrick/cluster/elbow.html
Yellowbrick. (2019). Yellowbrick: Machine Learning Visualization, Revision 682b3528. Retrieved from

https://www.scikit-yb.org/en/latest/
Yin, X. G. (2017). Improved Deep Embedded Clustering with Local Structure Preservation. Proceedings of the

Twenty-Sixth International Joint Conference on, 1753-1759.

