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Executive Summary 
The deliverable D4.6 “Load Profile and Customer Clusters V2” is the second deliverable associated wich task 4.2 
“Big Data Clustering techniques for load profiling and customer segmentation”, which main objective is to propose 
techniques and methodologies for clustering the profiles of prosumers. This deliverable  describes the architecture, 
integration, data-flows, techniques and methodologies adopted for the modules that compose the so-called Big 
Data Layer: “Load Profiling”, “Big Data Clustering at Multiple Scale” and “Customer Segmentation”; a relevant 
portion of the architecture layer “Next Generation Services for Aggregators and Customers”.  

This document provides the description of the architecture, integration, methodologies and techniques of the Big 
Data Layer components as follows.  

Chapter 1: describes the objectives of task 4.6, derived from the work in the previous deliverable 4.2 of  the same 
task 4.2. Later, a description of the dataset from the Italian Pilot site (ASM) is provided, which will be used 
throughout the document. The potential application of the described tools in the other pilot site in U.K (Kiwi 
Power) is described as well. 

Chapter 2 includes all the elements useful for the integration of T4.2 components into the eDREAM platform; the 
development of these components has followed the concepts of the stable and scalable solution described in 
deliverable 4.2. The use cases in which  the tools will be tested, have been analysed in section 2.1 considering the 
interaction of three components with the other modules. The Big Data Layer architecture is described in section 
2.2 and 2.3, with comprehensive information of all sub-components and technologies adopted. An important 
preliminary activity in big data analysis is the pre-processing, that deals with the quality of data ingested. Section 
2.4 provides details of the pre-processing module that oversees filtering and cleaning the data to be processed. 
Several techniques have been applied to ASM dataset and for each one of them, graphic results are provided. 

The first one of the three modules, the Load Profiling is described in Chapter 3. This component deals with the 
organization of data according to different timing. Basically, when a large dataset of energy profiles is considered, 
timeseries need to be reconfigured in order to extract information from them. In this case eleven different options 
for profiling have been identified, that are generally considered for the customer portfolio characterization ( i.e. 
from ASM dataset). In this case, the different profiles represent the features for the next clustering module. It is 
important to remark options 10 and 11 deal with the organization of data from the “Electricity 
consumption/production forecasting” module which calculates baseline and flexibility profiles for the same ASM 
dataset.   

In Chapter 4 the clustering algorithm is described. It is indeed a combination of three different algorithm that could 
work or independently. As a matter of fact, plenty of clustering techniques are today available with different 
specifications and performances depending on the dataset and the feature to cluster. In eDREAM and in particular 
in Task 4.2 there is the possibility to cluster large datasets for market analysis, that could be required by a service 
operator (DSO, Aggregator, Retailer, etc.). This clustering analysis generally considers a high number of 
heterogeneous users with several years of data (even with poor granularity). In this case the overall architecture 
should be able to treat large volumes of data and extract as many insights as possible. On the other hand, it is 
necessary to cluster a different dataset composed by  fewer prosumers (sometimes more homogeneous data), but 
with higher granularity and in a shorter time. The first clustering is useful for portfolio characterization, market 
analysis, offering proper tariffs and planning activities in general, while the second one could be adopted for 
intraday or fast response market applications. In this deliverable two different clustering techniques have been 
developed for both purposes: Autoencoder (a deep learning technique with high performance in big data 
applications) and K-means (a more generic technique for the second case that also provides good scalability). A 
third technique DB-Scan has been considered for its complementary features with respect of the K-means. For 
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each one of the algorithms, graphic results are depicted; Autoencoder have been used only in one option (the daily 
profiles of the whole prosumers portfolio  was the only one with enough data), while K-means and DB Scan with 
multiple options. 

Finally, in Chapter 5 the Customer Segmentation module is described. Based on the clusters previously calculated  
by the Big Data Clustering at multiple scale module, this component can be fed with a generic energy user profile 
and is able to assign it to the proper cluster, with an accuracy value that confirm the matching between the 
customer profile and the cluster overall profile.  
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1 Introduction 

1.1 Objective 
The objective of this deliverable is to describe the development of the three modules of the eDREAM architecture 
“Load Profiling”, “Big Data Clustering at multiple scale”, and “Customer Segmentation”. Starting from the 
information included in Deliverable 4.2, where methodology, procedures, and technologies had been identified, in 
this second version of the document the actual development of the three modules is described. In particular, this 
document describes the algorithms composing the modules, all the technical details and the choices taken by 
developers and the complete operation of the considered tools, taking into account the overall objectives of the 
eDREAM platform and the use cases where they are going to be validated. The three software components are 
part of the so-called Big Data Layer, a set of tools adopting big data approach for providing added value services 
for the eDREAM platform users. 

1.2 Pilot Sites Application 
This chapter aims to describe the provided historical datasets: where they come from, collected period time, 
dataset quality and requirements that must be addressed  for being used in order to succeed the objectives of this 
deliverable: 

1.2.1 Italian Pilot  
ASM Terni provides two datasets, collected from smart meters of prosumers and final users in KW/h, coded and 
anonymized by alphanumeric unique code as “P_XXXXX”. Datasets are composed by 2 folders named: “Scambio” 
and “Prelievo” (Italian words respectively for “Exchange” and “Withdrawal”). Both files are organized with the 
following fields represented in Figure 1: 

 
 

Figure 1: ASM dataset fields 
 

The name of the fields are acronyms hereby described: 

• POD: it is the Point of Delivery, the unique code of the supply or exchange assigned by the DSO to a 
user 

• DHH: datetime interval of the data included in the OH** fields of the same line. The data is written 
in the format: yyyymmddhh 
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• OH100, OH115, OH130, OH145: refer to the active energy consumed or produced if the POD  is 
exchanging energy , in the first, second, third and fourth 15 minutes of the time indicated in the DHH 
field respectively. 

• OH200, OH215, OH230, OH245: refer to the reactive energy consumed or produced if the POD is 
exchanging energy , in the first, second, third and fourth 15 minutes of the time indicated in the DHH 
field respectively. 

 

As for reactive values, both dataset present null values so this variable will not be taken into account for further 
use or analysis. 

1.2.1.1 “Scambio” dataset 

This dataset consists of exchanged electricity energy records every 15 min for almost 4 years (from May 2015 to 
February 2019) from 1229 prosumers. The dataset should record two measures (consumption and generation by 
user), but actually, only consumption data are available in the end, , so it is not possible to understand the total 
amount of energy generated/consumed for each record. 

Looking deeper into the dataset, it seems that most of the records are synthetic measurements, as depicted in 
Figure 2. It means that with few real signals from smart meters, it is possible to recreate approximations of the 
missing values. This technique could originate recurring patterns in profiles that make the dataset useless for 
flexibility or clustering analysis purposes (for the flatness of the curve). 

 

 
 

Figure 2: Sample of the “scambio” profile for a random prosumer 

 

1.2.1.2 “Prelievo” dataset 

This dataset includes the values of the energy consumed by final users. The data are collected every 15 minutes, 
for more than 4 years (from January 2015 to February 2019) from 561 users. As shown in Figure 3, the values of 
this dataset present a pointed and seasonal curve with real measurements. 
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Figure 3: Sample of the “prelievo” profile for a random final user 

 

1.2.2 UK Pilot 
Whilst not directly involved in the testing and validation phase of this tool, the U.K. pilot, coordinated by Kiwi 
Power, can be a potential user for further applications. Thus, some aspects of this pilot have been considered 
during T4.2 activities to allow for replicability and maximization of the impact. 

Although the mentioned site (see section 7 of Deliverable D4.2) is not able to provide data aligned with the 
requirements for a clustering application, Kiwi Power, as an aggregator, would have access to large volumes of data 
with time-wise granularity in the range of minutes. On the other hand, in order to ensure access to different service 
markets, it is important to create coalitions of users (i.e. clusters) rapidly. This means the considered application 
should be able to detect and gather details in customers profiles patterns with a certain degree of accuracy while 
being flexible enough to rapidly respond to large volumes of data. Due to the computational and timing specific 
nature of each problem, no single technique could fit all and as so, attempting a unique solution would be 
misguided. 

For this purpose, it has been decided to have a tool based on a selection of algorithms that jointly have the 
necessary characteristics to tackle individual problems and cover as many scenarios as possible. The scalability 
constraint has been addressed in D4.2 and in the following section in this document, while the description of the 
different adopted algorithms and their activation is included in section 4. 

 

2 Implementation of a stable and scalable solution 
This section deals with the implementation strategy of the big data layer and its integration into the eDREAM 
platform. According to the methodology defined in the first version of this deliverable (Ref. to D4.2), the big data 
layer should accomplish generic requirements in terms of stability and scalability. To achieve these two features, it 
was proposed a design strategy based on the so-called 5 V’s: Volume, Velocity, Variety, Veracity and Value (use the 
same refs. of D4.2 page 14). So basically, the 5V’s have been adopted during the during the design phase in order 
to obtain a scalable and stable solution during the development and integration phase. 

Starting from the definition of stability requirements described in the Deliverable 4.2, the operational stability is 
somehow ensured by design due to intrinsic characteristic of the eDREAM platform based on microservices 
architecture (more information about this in Deliverable 6.1 and Deliverable 6.2). On the other hand, some tests 
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have been conducted to check the proper operation of the modules; unit tests, functional tests and integration 
tests.  

Unit tests have been planned in the Deliverable D6.1 “Concept for Joint Integration and Interconnection”, where 
the plan for the integration of the project’s modules into the eDREAM platform is described. In unit test, every 
module and every portion of module’s code is tested in isolated way for checking if it works or not. The unit tests 
are uploaded into the GitLab repository in accordance to the Continuous Integration (CI) methodology proposed 
in Deliverable D6.2. For instance, in following Figure 4 the screenshot of the unit test of a script sample of the load 
profiling module (described in section 3) is presented. While in Figure 5 the unit test of the entire pipeline of the 
Customer Segmentation module is shown. 

 

Figure 4: Example of unit test of .py script in pre-processing tool 

 

 

Figure 5: Result of unit test for the whole Customer Segmentation pipeline 

 

Apart from unit tests, functional tests will be conducted during the validation phase (WP7) and Integration tests 
are considered in Deliverable 6.2. 
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The microservice architecture is also advantageous for scalability requirements, because it is possible to scale it 
out in several machines, duplicating only specific services (Ref. D4.2). Along with this intrinsic feature, a specific 
algorithm for big data clustering have been selected. The Big Data Clustering at multiple scale, the tool devoted to 
clustering data from customers, have been designed with the option to select different algorithms according to 
the volume of input data. It means that a specific deep learning algorithm with artificial neural network (see section 
4.3.1) is activated when a threshold in data volume is overpassed. 

 

2.1 Integration in eDREAM Platform 
The integration of the three modules developed in this document into the eDREAM architecture is described in 
the deliverable D2.5 (eDREAM H2020 Project) with the latest architectural diagram and the use cases describing 
the interaction of these modules with the other ones. In the Use Case 1.6 “Flexibility offering” is involved the Big 
Data Clustering at Multiple Scale module, and in Use Case 3.1 “Prosumers Profiling and Clusterization” are involved 
Load Profiling, Big Data Clustering at Multiple Scale and Customer Segmentation. 

In the Use Case 1.6 (Figure 6) the Big Data Clustering at Multiple scale module, receives a request from the DSS & 
DR Strategies Optimization User Interface about a specific subset of prosumers to calculate. This module will send 
back the resulting subset of prosumers according to the received request.  

 

 

Figure 6: Modules interactions described in Use Case 1.6 

 

In the Use Case 3.1 (Figure 7) the Graph Based analytics module sends a request to the Big Data Clustering at 
Multiple scale with specific criteria of prosumers’ flexibility categorization. The request is forwarded to the Load 
Profiling module that asks flexibility profiles to Electricity Consumption and Production Forecasting module and 
extract the flexibility profiles in accordance to the original petition. Those profiles are sent back to the Big Data 
Clustering module that calculates the clusters of flexibility and sends the results to the Graph based analytics. In 
case of new prosumers to be assessed, it is possible to gather them into the cluster with the most similar profile 
through the Customer segmentation module, directly connected to the Big Data Clustering Module. 

 

DSS & DR 
Strategies 

Optimization UI 

Big Data 
Clustering... 

Electricity 
Forecasting Load Profiling 
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Figure 7: Modules interactions described in Use Case 3.1 

 

2.2 Big Data Layer Architecture 
The three modules of task T4.2 are supposed to work and operate with a strong mutual interaction, and since they 
also share some common objectives, they constitute de-facto, a unique element that has been informally called 
Big Data Layer. Apart from Load Profiling, Big Data Clustering at Multiple Scale and Customer Segmentation, a pre-
processing tool is also part of the Big Data Layer, since it is necessary for the data processing of the three modules. 
Big Data Layer has been already widely described in Deliverable D4.2 and in this document the high-level 
architectural scheme is provided as a reminder in Figure 8, for a better comprehension of the tools described in 
the following sections. 

 

Figure 8: Big Data Layer Architecture 
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2.3 API for Big Data Layer  
Big Data Layer provides a useful and handy web service designed with an API-Rest, enabling access to the algorithm 
serving outcome. API’s resources are associated with : Big Data Clustering at Multiple Scales and Customer 
Segmentation modules. 

In addition, a swagger interface has been built as an easy way to visualize the main API functionality and test the 
resources, as illustrated in Figure 9. 

 

Figure 9: User REST API interface of Big Data Layer 

Big Data Clustering at Multiple Scales resource provides the corresponding clusters according to one of the 
available options in the Load Profiling module, detailed in section 3. Customer segmentation resource requires 
entering the day and username to obtain the belonging cluster. Both End-point URL and parameters are detailed 
in the following Table 1, as well as the response obtained. 

Big Data Layer – REST API 
Big Data Layer at Multiple Scales 

Description Through this interface, end users or other modules of eDREAM project are able to access to the 
clusters and results of Big Data Layer according the option selected  

End-point URL /clustering?option={}&date={} 
Parameters option (see section 3, Table 1) 

format_time = %Y-%m-%d-%H:%M:%S (only available for option 10)  
Allowed HTTP 

Methods 
GET 

Class Type of 
GET response 

{  
 "option":{ 
  "option_id":"7", 
  "details": { "id": "fall", 
    "granularity_id": "months",  
     } 
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 "algorithm_result":[{ algorith_name: "kmeans", 
 "clusters”: { 
  "num_clusters":"4", 
  "details": { 
   "num_cluster_0": "304", 
   "num_cluster_1": "8",  
   "num_cluster_2": "10", 
   "num_cluster_3": "26", 
   }, 
  "results": [ 
   {"cluster": "0", 
    "users": [ 
     "P_008104", 
     "P_00E9DF", 
     "P_00B401", 
     ....,  
     "P_00D8C9" 
     ] 
   }, 
   {"cluster": "0", 
    "users": [ 
    "P_0092C3", 
    "P_00EC6F", 
    ..., 
    "P_00B211" 
    ] 
   }, 
   {"cluster": "0", 
    "users": [ 
    "P_00A130", 
    "P_011BF8", 
    ..., 
    "P_00B211" 
    ] 
   }, 
   }, 
   {"cluster": "0", 
    "users": [ 
    "P_00AB21", 
    "P_00DEE7", 
    ...., 
    "P_00D7FE" 
    ] 
   ]} 
  } 
 ]} 
} 
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Customer Segmentation 
Description Through this interface, final users or other modules of eDREAM project are been able to obtain 

the cluster to which the user provided belongs 
End-point URL /customer_segmentation?user_id={}&date={} 

Parameters user_id: the user identification of which you want to know the cluster to which it belongs 
date: values of the selected day 

Allowed HTTP 
Methods 

GET 

Class Type of 
GET response 

{ 
     "user_id": "P_055FE3" 
     "date": "2015-08-17", 
      "cluster_belong": 3 
} 

Table 1: REST API details of Big Data Layer 

 

2.4 Software and libraries 
In Deliverable D4.2 a list of libraries has been identified and proposed for tools development; among the 
technologies identified this section describes the adopted ones. The main scope of the libraries used in this module 
is framed in the machine learning and deep learning fields. In this way we can achieve the goal of deploying and 
developing the Big Data Layer as a fully connected and functional platform.  

SOFTWARE: 

• Python (Python, 2020): is the programming language used to develop all modules that are part of the Big 
Data Layer. As reference language for machine learning and deep learning, it also counts with advantages 
such as  readable and maintainable code, compatible with major platform and systems, robust standard 
library, many open source frameworks and tools, fast and easy prototyping algorithms. (Solutions, 2017) 

 

LIBRARIES 

• NumPy (NumPy, 2020): is a numerical python library, aimed at scientific computing to perform 
mathematical operations on arrays. 

• Pandas (Pandas, 2020): is a package that principally works with datasets for processing and analysis, 
allowing: load, analyse, manipulate and write. 

• Dask (DASK, 2019): Per its official page, “Dask is a flexible library for parallel computing in Python”. It 
enables parallelize task of Pandas, Numpy or Scikit-Learn packages. Thus, it can help to optimize and scale 
algorithms.  

• Scikit-learn (scikit-learn, 2020): is one of the most famous libraries to use for machine learning. It includes 
a prebuilt algorithm for classification, regression, clustering, dimensionality reduction, model selection or 
preprocessing. This package is used in all Big Data Layer modules providing the algorithms of k-means, 
DBSCAN or Isolation Forest among others.  

• Tensorflow (TensorFlow, 2020): is the most important library used to create deep learning models. It is 
created by Google for fast numerical computing and maintained and released under the Apache 2.0 open 
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source license.  One of the great advantages is that it can run on single CPU systems, GPUs or mobile 
devices as well as in large-scale distributed systems of hundreds of machines. (Brownlee, 2016).  

• Pyculiarity (Miller, 2018): is a python library originally developed in R for Twitter's Anomaly Detection. 
This package detects anomalies both in time series and in a vector of numerical values from a statistical 
standpoint, in the presence of seasonality and an underlying trend. 

• Yellowbrick (Yellowbrick, 2019): is a set of diagnostic and visual analysis tools designed to facilitate 
machine learning with scikit-learn. It implements a Visualizer to scikit-learn, through an API, enabling to 
choose the models, the hyperparameters tuning and creating intuition around feature engineering. 

2.5 Pre-processing 
This chapter aims to describe all those tasks which cover the pre-processing step, being this a mandatory process, 
in order to filter and clean the raw data acquiring quality and consistency for future clustering.  

This pre-processing step is a pipeline divided into five subtasks: 

- Organize raw data: due to the datasets coming from different resources (prosumers and final users), these 
must be organized with a unique structure in order to be homogeneous and manageable   

- Data cleaning: this subtask, in essence, deals with the quality of the gathered data carrying out different 
techniques (e.g. remove duplicated or delete inconsistent data), in order to obtain consistency and 
usability. 

- Filter dataset: once the datasets accomplish the quality and consistency objectives, these should be 
filtered (i.e. accept only the dataset which counts with a minimum number of points or have a certain 
number of null values among others)  to obtain good results in the analysis. 

- Remove outliers: the presence of outliers in the dataset can distort the analysis, reason because of they 
must be removed.  

- Fill missing values: the goal of this subtask is to prevent the shortage of data. Firstly, it analyses the cases 
where it is required or if otherwise, the missing values can be omitted due to its size. 

- Normalization: the variety of scales among the initial data sets require the normalization in order to obtain 
their consumption pattern. 

As aforementioned, the module developed for this task can receive the input dataset from the modules of 
“Electricity Consumption/Production Forecasting”, “Baseline Flexibility Estimation” and historical data (ASM 
“prelievo” dataset) depending on the user’s choice. According to the needs of each input source there are different 
workflows of subtask. For ASM “prelievo” dataset all the subtasks are performed due to the historical data had not 
been pre-processed previously, contrary to Forecasting and Flexibility modules where only required to organize 
the data to have the same feeding structure for clustering module. 

In the next subsections,  all subtasks are described in detail applying examples of historical data. 

 

2.5.1 Organize raw data 
This task aims to organize the raw data from ASM “prelievo” dataset, improving readability and homogenizing the 
data. To this objective, the initial txt file, presented in Figure 1 is filtered by user and the hour values of each row 
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are harmonized into a data-frame as time series (2-dimensional labelled data structure with columns, (Pandas, 
2014) as shown in Figure 10. 

 

 

Figure 10: Module for raw data organization 

2.5.2 Data cleaning  
Once the dataset has been organized, different techniques have been applied to obtain consistency and usability: 

1. Set index datetime: because the  Pandas´ library is used, the set data-frame index with timestamp allows 
an agile manipulation; 

2. Remove duplicates: having duplicates can lead to wrong analysis when the data pass through the 
algorithm; 

3. Resample by 15 min: this technique allows to fill any gap that there might be, introducing a timestamp if 
it lacks and applying NaN (Not a Number) to the value; 

4. Delete spring clock change: remove the values that belongs to the clock change hour (02:00:00 -> 
03:00:00) 

 

Finally, this module saves each user data-frame into csv files as shown in Figure 11. 

 

Figure 11: Data cleaning step output  
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Initially txt file counts with 561 users, but after applying organize raw data and data cleaning, four users are deleted 
due to the impossibility of reorganizing their data. So, the final users to use are 557. 

• Domestic users: 105 

• Other users: 452 

Since 6kW is the upper limit of power capacity (with  +10% of tolerance) for domestic users, we use this threshold 
to separate domestic customers from other ones. Basically, we assume as domestic user any profile with an hourly 
consumption lower than 6,6 kWh. 

Below, Figure 12 and Figure 13 illustrate both domestic and other monthly consumption. 

 
Figure 12: Monthly consumption of domestic users 

 

 
Figure 13: Monthly consumption of other users 

 

2.5.3 Filter dataset 
This subtask aims to filter the users, (i.e. accept or exclude), according to several criteria, to obtain good results in 
the clustering.  

At this end, subtask provides an excel file, which lookss as shown in Figure 14, where each row belongs to one user 
describing : the initial and end datetime period of its records, the total records that it has, number of NaN values, 
which type of user is, (i.e. domestic or other), number of valid data, valid data greater than 60, which refers to the 
first criterion, number of zero data and its percentage, second criterion and the final column, that describes  if the 
user finally is accepted or excluded. 
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Figure 14: Filtered table of users 

Analysing in more details, the table,  the following conclusions can be drawn: 

• 452 users belong to “other” 

• 105 users are “domestic” 

• 355 users count with all records, values between 01-January to 28-February (145904 values, this includes 
NaN, zero and valid data) as depicted in Figure 15. 

 
Figure 15: Histogram of total data for all users 

 
- The following histogram of NaN values, Figure 16, shows a relevant quantity of null data (record = NaN, 

i.e. empty or none), but only 15 users have more than 5000 nan values so in this case, it is decided not to 
set a filter. 

 
Figure 16: Histogram of Nan data for all users 
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- As in the previous case, through the analysis of the percentage of zero values in all the dataset (Figure 17), 
it seems that the quantity is also relevant, so it is decided to set a filter.  

 
Figure 17: Percentage of zero data for all users 

 
The choice to set the following filters, is based mostly on the previous results and on the fact that for the 
characterization of flexibility in the customer portfolio the value  should be as lower as possible; allowing the 
acceptance of the largest number of users. That said, to accept one user, it must accomplish the following criteria: 

1. 𝑣𝑎𝑙𝑖𝑑	𝑑𝑎𝑡𝑎	 ≥ 87542	𝑣𝑎𝑙𝑢𝑒𝑠: understanding as valid data, those values different than NaN (i.e. empty or 
none), and being at least the 60% of the total records per user (from January 2015 to February 2019 = 
145904 * 0,6 = 87542 records)  

2. 𝑧𝑒𝑟𝑜	𝑑𝑎𝑡𝑎	 ≤ 30%: if its valid data: being zero data those records equal to 0 

 

After filtering all the users with those criteria: 

• 2 “domestic” users are accepted 

• 347 “other” users are being accepted 

So that 349 users are accepted, representing 62.65% of the total users (557). For these users  the remove outliers 
and fill missing values modules are applied. Hereafter, Figure 18 and Figure 19 depict the monthly consumption of 
domestic and other users respectively.  

 
Figure 18: Monthly consumption of domestic accepted users 
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Figure 19: Monthly consumption other accepted users 

 

2.5.4 Removing outliers 
The presence of anomalies in the dataset can affect the analysis and further clustering; so that they must be 
removed or replaced.  Three techniques are applied: threshold, Isolation Forest and Pyculiarity algorithms. 

1. Threshold: this technique replaces all records which exceed the contractual power, by the user (maximum 
hourly consumption hired) to its value contracted value; 

 

Figure 20: Sample of four years energy consumption data (blue) and consumption capacity threshold (yellow) 

2. Isolation Forest: is an unsupervised learning algorithm based on Decision Tree for anomaly detection that 
uses an ensemble of Isolation Trees for the given data points. 

Isolation Forest algorithm (K, 2020) selects randomly a characteristic from the available ones from  the 
given data set and isolates the outliers. Subsequently, it selects a value, also randomly, from the maximum 
and minimum values of that previously selected characteristic. The anomalous points when producing 
shorter routes allow them to be distinguished from the rest of the data, which generate longer routes. 

To use this technique two parameters must be set (Scikit-learn, 2019): 

• max_samples: the number used to train the algorithm. Because all the users having more than 
87542 records, it is set as 90000. 

• contamination: the number of outliers in the dataset. This parameter has been set as 0.1 which 
represents that the maximum number of outliers are being 10% of the total dataset 

 
The output is an array with the same length as the dataset, with two values: “-1” corresponding to outliers, 
depicted with red circles in Figure 21, and “1” corresponding to normal data, blue line. 
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Figure 21: Isolation Forest outliers 

 

3. Pyculiarity: (Miller, 2018) is a technique for  anomaly detection which uses the seasonal hybrid ESD Test 
in order to detect anomalies in seasonal univariate time series, where the input is a series of <timestamp, 
value> pairs. Its advantage is not only to detect the anomalies but also estimate the expected value. As 
well as in Isolation forest algorithm, two parameters must be set  

• alpha: set to 0.05 is the level of statistical significance with which to accept or reject anomalies. 
• max_anoms: maximum number of anomalies that S-H-ESD will detect as a percentage of the data. 

This parameter has been set as 0.1 which represents  the maximum number of outliers are 10% 
of the total dataset. 

 
Figure 22: Pyculiarity outliers 

Both Isolation Forest and Pyculiarity search up to a maximum of 10% of outliers in the dataset. Therefore, only 
those outliers (red points in Figure 21 and Figure 22) that are presented in both methods will  to be turned into 
the offered Pyculiarity expected value. 
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Figure 23: Outliers results 

Figure 23 depicts the two mentioned methods, Pyculiarity in red squares and Isolation Forest in black points. 
Pyculiarity obtains less points because it considers the stationarity and seasonality, while Isolation Forest does not 
consider those two parameters; thus it provides many outliers. The proposed method for adjusting the outlier’s 
values is illustrated in detail inside the red circle: these three points (yellow line) are considered as outliers by 
Pyculiarity and Isolation Forest so the values turned into the expected Pyculiarity values (light purple lines) and 
numerically represented in Figure 24. 
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Figure 24: Screenshot of  Pyculiarity expected values 

 

2.5.5 Fill missing values 
Sometimes the gathered data has gaps or is incomplete, as shown in Figure 25, due to multiple factors e.g. no 
connection with smart meter during a period, sensor malfunctions among others, which can lead to errors in 
estimations, distortion of the analysis or invalid  conclusions. Therefore, the goal of this subtask is to fill these gaps 
carrying out a process of reconstruction. 
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Figure 25: Sample of missing values in user dataset 

The documentation in the field is so wide, with some techniques like replace missing data with an impossible value, 
data imputation (e.g. mean, median, mode, interpolation or imputation) or rolling. Considering the data is a date 
time, methods like mean or median are not applicable because they don´t take into account the seasonality or 
stationarity (El-Nesr, 2018). 

Considering the previous  paragraph, the procedure for filling the missing values is: 

1. Create an excel file that collects the prosumers with missing values. This file provides, by columns, the 
prosumer name; by index, when its missing period starts, and the values represent how many consecutive 
missing values it has. Figure 26 shows a sample extract of this excel file. 

 

 

Figure 26: Part of the excel with the missing values in ASM “prelievo” dataset 

 

2. Two techniques are applied depending on the number of missing values. Interpolation methods for 
missing values´ gaps   equal or less than 96 points and the reconstruct method for gaps greater than 96 
points (24 hours * 15minutes sampling = 96 records).  

0 
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• Interpolation methods (between 0-96 missing values): for gaps up to 4 points the nearest 
interpolation method is used (pandas, 2014), while for more points (4 to 96 missing gaps) 
slinear (a first order spline linear interpolation) method is applied (pandas, 2014). 

Both methods have been selected after testing other ones as: cubic, spline, akima or 
polynomial (orders 3, 4 and 5) obtaining lower accuracy. 

• Reconstruct method (more than 96 missing values): this method applies when these two 
conditions occur as shown in Figure 27: 

o 1) the prosumer should have a gap with more than 96 missing values and  

o 2) there must be equal or more than 15 prosumers with the same number of missing 
values for the same date time; 

As it can be seen in the partial excel, Figure 26, the two conditions appear in the remarked 
box, for all the prosumers with 2976 missing values at datetime 2016-05-01 00:00:00. This 
method works as follow for each prosumer: 

 
Figure 27: Dataset with one month missing values 

 
o First it calculates the trend of the missing values. The trend is determined by drawing 

a line (ascending or descending) between the average of the last full day and the next 
available full day (Figure 28). Understanding the average of the last full day as the 
calculation of the mean of the full day (24-hour average * 4 points / hour = 96 points) 
before the missing value period. If this day is not complete (96 points), the algorithm 
searches in previous days, until finding a complete one. The last full day of the trend 
should contain 96 points after missing values period. 
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Figure 28: Reconstruct method 

 

o Then, it collects same missing values period with the two previous and subsequent 
weeks in the remaining available years. Afterwards, the difference between the 
weeks available and the drawn line is calculated. The week with the smallest result, 
that is, the value closest to the line, will be selected. Finally, the difference between 
the selected week and the line is completed until reaching the latter.  Results of the 
filled gap are shown in Figure 29. 

 
Figure 29: Dataset after applied reconstruct method  

 

2.5.6 Normalization 
One of the objectives of this deliverable is to cluster the users based on their consumption profiles and 
consumption patterns. Understanding, as consumption profiles, how much energy the users consume and as 
consumption patterns when users consume more (ups and downs along short periods of time). 

To do so, the datasets collected (raw data) represent the user's consumption, so they must be treated, applying a 
normalization to obtain the consumption patterns and consumption profiles. 
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Minmax Scaler (Scikit learn, 2019) is the method which allows to make this treatment. It takes the dataset and 
scales the values in range [0-1]. This means, that the highest measurement of the dataset is transformed to 1 and 
the lowest to 0; the transformation is given by Equation 1 and calculated as Equation 2. 

𝑋!"# =	
(	&'	&!"#(%&'()*))

(&!,-(%&'()*)	'	&!"#(%&'()*))
 ;        𝑋!"#$%& =	𝑋!'& 	 ∗ (𝑚𝑎𝑥 −𝑚𝑖𝑛	) + 	𝑚𝑖𝑛 

 
Equation 1: MinMaxScaler transformation 

 
 

𝑋!)*+,# = 𝑠𝑐𝑎𝑙𝑒 ∗ 𝑋 + min	 −		 𝑋-./(*01!23) ∗ 𝑠𝑐𝑎𝑙𝑒			 
 

	𝑤ℎ𝑒𝑟𝑒		𝑠𝑐𝑎𝑙𝑒 = 	 ((-45'	-./	)		
(&!,-(%&'()*)	'	&!"#(%&'()*))

  

 
Equation 2: MinMaxScaler calculations 

 
Although standardization is considered as a pre-processing method, in this case, it will be applied as a previous 
step to the clustering algorithms since the pattern or profile portfolio of the dataset is given by the selected 
option in Load Profiling module. 
 

3 Load Profiling  
Load Profiling is the first module of Big Data Layer which aims to categorize the prosumers according to a series of 
features. It ingests the data coming from the pre-processing module or Electricity Consumption and Production 
Forecasting module, afterwards categorize the dataset and finally it ingests them in Big Data Clustering at Multiple 
Scale module.    

The considered features have been selected from biography (Yassine, 2018), (Torabi, Hashemi, Saybani, 
Shamshirband, & Mosavi, 2018), previous deliverable 4.2 and the knowledge field.  

Following  

Table 2 exposes the selected features: 
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Option Feature description Granularity data Length of data 
(number of values) 

1 Daily 15 min 96 

2 Daily working days (Mon – Fri) 15 min (mean) 480 

3 Daily weekend days (Sat – Sun) 15 min (mean) 192 

4 Weekly on hourly base (Mon – Sun) 1h (mean) 168 

5 Weekly on daily base (Mon – Sun) Daily (mean) 7 

6 Summer months on daily base (Jun-Jul-Aug) Daily (mean) 92 

7 Fall months on daily base (Sep-Oct-Nov) Daily (mean) 91 

8 Winter months on daily basis (Dec-Jan-Feb) Daily (mean) 90 

9 Spring months on daily basis (Mar-Apr-May) Daily (mean) 92 

10 Flexibility working days on daily base 1h 672 

11 Monthly Flexibility 1h 1 
 

Table 2: Features of load profiling module  

 

This module allows selecting an option, among those available in Table 2, according to which the clustering will be 
carried out. It works as follows: 

1. If the selected option is among 1-9, Load Profiling receives the pre-processed data from the historical 
dataset of ASM, but when option 10 or 11 are selected, data are provided by “Electricity Consumption and 
Production Forecasting” module. This module calculates the baseline and flexibility of the ASM customers; 
thus, it is possible to profile the day-ahead flexibility with a 1-hour granularity.  

2. Below paragraphs describe how the dataset is treated based on the option: 

a. Option 1: the final dataset is the concatenation of all days of every user, that allows to obtain a 
dataset with more than 450.000 rows. Figure 30 depicts partially one user dataset when  option 
1 is selected. 

 

Figure 30: Dataset obtained from option 1 for one user 
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b. In options 2 to 9: these files calculate the mean in accordance with the option description.  This 
enables to get a single row per user, with a total dataset of 348 rows, the same number of users 
obtained from the pre-processed module. Figure 31 shows how the data per user is organized 
based on the selected option; while Figure 32 illustrates the mean used to form the final dataset 
file. 

  

Figure 31: User´s dataset organizes based on option 7 

 

 

Figure 32: Final row of the mean option 7 

 

c. Options 10 and 11: these  options validate the use case 3.1, where the Load Profiling module asks 
the flexibility profiles to Electricity Consumption and Production Forecasting module. Thanks to 
these two options it is possible to extract the profiles of flexibility from customers, therefore the 
clustering tool will be able to group the users not only for the energy they consume, but also for 
the flexibility they can potentially  provide. This way allows to achieve a more granular and 
accurate response, than adopting the features from section 5.1 of Deliverable D4.2, which is 
estimating the flexibility indirectly from common consumption data. The “Electricity 
Consumption and Production Forecasting module calculates and exposes the values of flexibility 
(thanks to external tool for Baseline Estimation) for each one of the customers of the Italian pilot 
site. The requests are done through an API Rest (See D3.1 “Electricity production/consumption 
forecasting techniques and tool V1, section 4.3 ), as shown in Figure 33, customizing the 
parameters in accordance to the option.  

 

Figure 33: Screenshot of the API Rest for flexibility request 
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The output of the module is, in all cases, a dataset with a different number of rows and columns; an element that 
directly affects the selection of the clustering algorithm and the treatment required, as will be seen in the next 
chapter.  

As mentioned in paragraph 2.5.6, once the final dataset is obtained a normalization step is mandatory in order to 
obtain the consumption patterns and consumption profiles:  

• Options 1-5 (daily and weekly options) are normalized with minmax scaled by row in order to cluster the 
pattern consumption of the profiles. The resulted clusters are independently of how much energy they 
consume, visualizing when they consume along the period time (ups and downs). 

• Options 6-9 (monthly options) are scaled by row. In these cases, the clustering considers  how much energy 
the users consume to face the flexibility and demand response modules. 

 

4 Big Data Clustering at Multiple Scale 
Big Data Clustering at Multiple Scale is the core module of Big Data Layer and therefore of task 4.2. This analytic 
tool offers the valuable information on the  clustering process to the operators enabling them to characterize their 
portfolio; since it helps in decision-making for flexibility management and assesses the participation of prosumers 
in the electricity market.  

According to deliverable 4.2 chapter 5 (p. 33) “The overall clusterization process is divided into five steps, as  Figure 
34 illustrates. The pre-processing step, filtering and cleaning the initially collected data, becomes essential for 
clustering algorithms (revise chapter 2.4 for more details). The second step deals with attribute selections, where 
the proper feature must be defined to extract valuable information from clusterization. In the third step, one out 
of the three developed clustering algorithms must be chosen according to pre-requisites. After the calculation, 
obtained results must be validated through different metrics. Finally, when information is already available and 
validated, the operators can interpret the results and extract the knowledge of the portfolio”. 
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Figure 34: Steps of clusterization procedure (source Atos based on (Halkidi, 2001)) 

 

4.1 Selected clustering algorithms 
The algorithms, which finally have been selected, considering those describes in Deliverable 4.2, section 5.2, are 
K-means, DBSCAN and Deep Embedded Clustering (Autoencoder+ K-means) due to the following reasons: 

- Both K-means and DBSCAN need only set one parameter to work. Both are scalable and perform well for 
a large number of examples and a medium number of clusters and employ a (metric) geometry of point 
distances (Scikit-learn, 2019).  

- Deep Embedded Clustering (Autoencoder+ K-means): this algorithm, although must set many parameters 
as hidden layers, batch size, epochs or number of clusters, allows to reduce the dimensionality and noise, 
keeping most of the information into the decoder layers.  Another reason why this algorithm has been 
selected is that its training is automatic with sample data, maintaining good performance in similar types 
of input, without the need to generalize. 

The following paragraphs describe the algorithms, how they work, and which parameters are required. 

 

4.2 Pre-requisites  
The goal of this section is to define in detail the initial parameters required by the three algorithms in the tool. K-
means and Autoencoder need to be initialized with the number of clusters, so different indices are considered to 
find the optimal number.  

DBScan needs no number of clusters, but a couple of parameters for the initialization hereby described. 
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4.2.1 Pre-requisites for K-Means and Autoencoder 
Both K-means and Deep Embedded Clustering (Autoencoder+ K-means) techniques requires the following two 
actions before being executed:  

• Size of data:  unlike K-means or DBSCAN algorithms that can achieve good results with not  many records, 
Autoencoder requires a large amount of records to train. Considering scalability requirements described 
in Section 2, Autoencoder provides the necessary capacity to manage big data, but, on the other hand, it 
is not precise with a small dataset. 

In particular, after tests conducted for ASM pilot site, with a limited number of customers in the dataset 
and the amount of data per customer, this algorithm can only be used when “option 1” in Table 2 is 
selected; since it offers this large amount of data set, being more than half a million. This value, which has 
been empirically selected, has a threshold for the activation of autoencoder; for dataset lesser than half 
million points K-means and DBScan show better performances. 

• Set the optimal number of clusters (k): set off this parameter is one crucial issue for these clustering 
algorithms, since it depends on the method used. Two types of methods are presented: 

o Elbow method: (Kassambara, 2018) that tries to optimize the sum of squared distances between 
each observation and its closest centroid. This method is performed with the Euclidean distance.  

𝑑(𝑝, 𝑞) = 	23(𝑞( − 𝑝())
*

(+,

 

Equation 3: Euclidean distance 

 
o Gap statistic: (Kassambara, 2018) which compares the total within intra-cluster variation for 

different values of k with their expected values under null reference distribution of the data. The 
optimal value is the one that maximized the gap statistic. 

𝐺𝑎𝑝(𝑘) ≥ 𝐺𝑎𝑝(𝑘 + 1) −	𝑠-., 
 

Equation 4: Gap Statistic metric 

 

In case above methods give different results, two more scores are applied to achieve the best optimal 
number of clusters. (Scikit learn, 2019) 

 
o Silhouette coefficient: calculates the mean ratio of intra-cluster and nearest-cluster distance. It 

presents an advantage, since the separation distance between the resulting clusters is in a range 
of [-1,1]; being “-1” when the distances between clusters are near or even overlapped and “1” 
when the distances between centroids are so distance. 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 	
(𝑏 − 𝑎)
max(𝑎, 𝑏)

 

𝑎 = 𝑚𝑒𝑎𝑛	𝑖𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒; 						𝑏 = 𝑚𝑒𝑎𝑛	𝑛𝑒𝑎𝑟𝑒𝑠𝑡 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
 

Equation 5: Silhouette coefficient 
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o Calinski-Harabasz: or variance ratio criterion, is the ratio between the within-cluster dispersion 
and the between-cluster dispersion. This score presents a better grouping the higher value 
obtained (Liu, 2015) 
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Equation 6: Calinski Harabasz distance  
 

k: represents the number of clusters; N means the total number of observations (data points); 
𝐒𝐒𝐖 is the overall within-cluster variance (equivalent to the total within sum of squares); 𝐒𝐒𝐁 is 
the overall between-cluster variance. 

 

Considering above requisites, the actions keep up to achieve them are the following: 

• Elbow method 

Yellowbrick library (Yellowbrick, 2019) provides one module for clustering which not only offers the visualization, 
but also provides the optimal number of clusters automatically for the elbow method.  

Elbow method has to set a tuple of the possible optimal number of clusters. This range is set as 2-10 and the 
algorithm where they are tried is K-means. So, iteratively it calculates the metric for each number in the range and 
provide their best scores, numerically and visually.  

 

• Gap statistic 

Gap statistic metric (Robert Tibshirani, 2000) is also tried using K-means algorithm and requires setting a range (2-
10), but unlike the above metric, it does not allow obtaining the optimal number of clusters automatically.  

In this case, Figure 35 is represented with the obtained values and the elbow must be located visually.  

  
Figure 35: Gap Statistic for option 3 “Daily weekend days (Sat – Sun)” 
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Following Table 3 gathers the results from the above methods for all the option of Load Profiling module. Each 
option presents two types of dataset from which the number of clusters is obtained: 

o Normalized dataset: comes directly from Load Profiling module where the data has been 
organized according to the selected option and applied the normalization described in paragraph 
2.5.6 to obtain consumption patterns (option 1-5) and consumption profiles (option 6-9). These 
datasets get theirs number of clusters depicted in the first line of every option. K-means 
algorithm, used to calculate the number of clusters, has the disadvantage that from a certain 
number of dimensions (length of data) the number of obtained clusters is constant. A possible 

solution is to reduce the dimensionality applying the PCA (Principal Component Analysis) 
algorithm; which converts each row of dataset with many columns into a given number of 
principal components previously defined; here PCA is set with two components 

o PCA dataset: this type of dataset is the result of applying the PCA algorithm to the normalized 
dataset; it allows to check if the disadvantage of K-means influences the calculation of the number 
of clusters. 

As presented in Table 3, both types of data set are applied to Elbow and Gap Statistic methods. This last 
one exposes the dimensionality problem, since it does not converge for normalized dataset. This problem 
is also shown in option 1 where a large number of data does not accomplish any result. In options 1, 6, 7, 
8, and 9 the dimensionality problem does not appear since they accomplish the same number of clusters 
both methods and data types. Additionally, Silhouette metric is performed in order how well the clustering 
is working on each dataset type. 

On the contrary, in the rest of the options where the clusters are different, Silhouette method is applied 
first (greater number, better result) and in case of the same results, Calinski-Harabasz method is calculated 
(greater number, better number of clusters).  

For instance, option 4 achieves five and four clusters for Elbow method with normalized and PCA data 
respectively, and three clusters for PCA data with Gap statistic. In this case, the calculation of Silhouette 
metric does not enable the selection of the best number due to Elbow and Gap Statistic method for PCA 
data get the same value, 0.46. So that Calinski-Harabasz metric is calculated, obtaining a better result for 
four number of clusters. These steps allow getting the optimal number of clusters for all option.    

Option Data Type Elbow 
Gap 

Statistic 

Silhouette     
Coefficient 

Calinski-Harabasz Optimal 
number of 

clusters Elbow 
Gap 

Statistic 
Elbow 

Gap 
Statistic 

1 
Normalized 4 - 0.2    

4 
PCA 4 - 0.4    

2 
Normalized 5 - 0.22    

5 
PCA 5 4 0.402 0.397 447.37 430.025 

3 
Normalized 4 - 0.27 -  - 

3 
PCA 4 3 0.44 0.46 429.498 442.587 

4 
Normalized 5 - 0.25 -  - 

4 
PCA 4 3 0.46 0.46 504.268 466.079 

5 Normalized 4  0.40    3 
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PCA 4 3 0.5 0.5 577.18 585.704 

6 
Normalized 3 - 

0.88 
  

3 
PCA 3 3   

7 
Normalized 4  0.67    

4 
PCA 4 4 0.69   

8 
Normalized 4 - 0.67    

4 
PCA 4 4 0.7   

9 
Normalized 4 - 0.85 -   

4 
PCA 4 4 0.86   

10 
Normalized 4 - 0.756    

3 
PCA 4 3 0.756 0.836   

11 
Normalized 5 - 0.774    

4 
PCA 4 4 0.786    

Table 3: Optimal number of clusters for k-means and autoencoder algorithm 

 

4.2.2 Pre-requisites for DBScan 
On the other hand, DBSCAN requires these two parameters to set (Prado, 2017): 

• minPoints: the minimum number of neighbours that a given point should have in order to be identifies as 
core point. The general rule is to set: 

𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠	 ≥ 𝐷 + 1					𝑤ℎ𝑒𝑟𝑒	𝐷 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 
 

Equation 7:  minPoints parameter for DBSCAN algorithm 

As was mentioned in D4.2, “considering the parameter minPoints, a general rule is that it can be derived 
from the number of dimensions (D) in the dataset, as minPoints ≥ D+1. Larger values are usually better for 
data sets with noise and will form more significant clusters. The minimum value for minPoints must be 3, 
but as larger the dataset is, the larger the value of minPoints should be” (Prado, 2017). 

• eps: two points are considered as neighbours, if the distance between them is below the threshold 
epsilon. The idea of the epsilon parameter is to calculate the average distances of every point to its k 
nearest neighbors. Eps is chosen based on the distance using a k-distance graph. (Ivan, 2020) 

𝑁(𝑝) = 	 {𝑞	𝑒	𝐷|𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠} 

Equation 8: Epsilon neighbourhood of a point 

If the epsilon value is too small, the largest part of the dataset will be not clustered. On the other hand, if 
the value is too high, clusters will merge, and most of the data points will end up being appointed to the 
same class. The decision of eps value should be based on the distance of dataset (k-distance graph could 
be used), but in general small eps values are preferable. For that, the k-nearest neighbors´ algorithm is 
used to calculate the distance from each point to its k closest neighbors. The value of k will be 
specified by the user and corresponds to MinPoints.  

These k-distances are plotted in ascending order in order to determine the ‘knee’, which corresponds 
to the optimal eps parameter. A knee corresponds to a threshold, where a sharp change occurs along 
the k-distance curve. Figure 36 below shows an example of k-distance curve for option 9, where the 
optimal value of the epsilon parameter is close to 2. 
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Figure 36: k-distance graph 

 

Table 4 shows the optimal number of clusters for every option of Load Profiling module, besides the parameters 
required for the DBSCAN algorithm: epsilon and the minimum number of neighbours, minPoints, according the 
Equation 7 and Silhouette score. On this occasion, only  option 2 applies the reduction of dimensionality, with 
value two, to the normalized data set. 

 

Option Eps minPoints Optimal number 
of clusters 

Silhouette     
Coefficient 

2 3.5 6 5 0.327 
3 5 193 2 0.345 
4 4.5 169 2 0.400 
5 0.6 8 3 0.547 
6 2 93 2 0.948 
7 2 92 2 0.934 
8 1.5 91 2 0.907 
9 1.4 93 2 0.948 

Table 4: Optimal number of clusters for DBSCAN algorithm 

 

The objective of this Table 5 is to select the best number of clusters for each option of Load Profiling (apart from 
option#1, that will be clustered through Autoencoder), based on the results accomplish with K-Means and DBScan 
algorithms. It shows the results with the Silhouette index commonly used for comparing both algorithms. 

 K-Means DBScan 

Option Optimal number 
of clusters 

Silhouette 
Coefficient 

Optimal number 
of clusters 

Silhouette 
Coefficient 

2 5 0.402 5 0.327 
3 3 0.44 2 0.345 
4 4 0.46 2 0.400 
5 3 0.5 3 0.547 
6 3 0.88 2 0.948 
7 4 0.69 2 0.934 
8 4 0.7 2 0.907 
9 4 0.86 2 0.948 

eps 
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Table 5: Comparison of Silhouette coefficient between the number of clusters of K-Means and DBScan 

From this table it is possible to see the different performances of both K-means and DBScan for the optimal number 
of clusters. Options 2 and 5 calculate the same number of clusters, while the rest show different numbers; the 
Silhouette index can be used for evaluating the quality of this pre-requisite.  It seems that K-means shows better 
results for options 3 and 6, while DBScan for the others, but it is important to remark that K-means is always 
showing a higher level of partitioning compared with DBScan, that is less sensitive to outliers (e.g. it tends to 
aggregate more) and it implicitly depends from Eps. 

 

4.3 Clustering algorithms and results  
This section provides a deeper description of chosen algorithms; describing deeper how they perform; which 
parameters must be set to their proper operation and the architecture or dataflow. Also, it is presented and 
discussed the different results of clustering obtained in section 4.2.2 above. 

4.3.1 Autoencoder 
Autoencoder is a deep learning technique based on artificial neural network. It has been adopted in Big Data 
Clustering at Multiple Scales as an alternative to a generic-purpose clustering algorithm (K-means) and providing 
scalability to the service.   

Improved Deep Embedded Clustering 

As stated in (Yin, 2017), the traditional approach to apply deep learning techniques in the clustering tasks is to 
create a clustering loss layer. Despite the good results obtained by this method further analysis have revealed that 
there is an important drawback on measuring this clustering loss, and it is that the latent space variable which 
contains the essential structure of the original dataset. The solution proposed is to keep training to preserve the 
latent space variable structure while the clustering layer is trained to reduce the clustering loss. 

 

Neural Network Architecture and Topology 

The core of this clustering solution is based on an autoencoder. Autoencoders are neural networks specialized in 
extracting the latent space variable for an input and, afterwards, reconstructing the expected output. They are 
widely used and present the state-of-the-art results for very different projects: denoising, super resolution, 
dimensionality reduction, anomaly detection etc. In the environment of the eDREAM’s project the autoencoder 
will be pretrained with the load profiles of different users, it shall compress the input data to extract the latent 
variables and reconstruct from those latent variables the original input. Consequently, it produces two outputs the 
encoded vector (Latent space array resulting from encoding the original input) and a decoded vector 
(Reconstructed array that should be similar to the original input).  

After this pretraining phase, the autoencoder has already adjusted their weights to perform a compression and 
decompression on the input vector minimizing the loss and keeping the latent space structure. At this point the 
custom clustering layer is added to the model as it is shown in the scheme from Figure 37: 



eDREAM D4.6 Load profiles and customer clusters V2  
 

D4.6 – Load profiles and customer clusters V2  42 

 
Figure 37: Autoencoder topology 

 

As both, the clustering layer and autoencoder, are trained in parallel the latent space structure shall be preserved 
while the clustering loss shall periodically decrease.  

This algorithm has outperformed k-means or other for high dimensional arrays as it can reduce the dimensionality 
of the problem without losing as much information as the traditional algorithms usually do. 

Setting parameters  

Autoencoder algorithm is performed with Tensorflow 2.0 (TensorFlow, 2020) and the parameters which must be 
set, are described the in following Table 6 

Table 6 

Parameter Set with Description 

dims [1*, 2*, 3*, 4*] 
[length_data, 512, 256, 

n_clusters] 

Dims is an array which contains the required 
parameter for the autoencoder (encoder-decoder) 
and K-means algorithm 

1*= input data shape length_data 
Length of data (number of values) per row according 
to the selected option (See section 3, Table 1) 

2*= first hidden layer 512 Number of nodes in the first hidden layer 
3*= second hidden layer 300 Number of nodes in the second hidden layer 
4*= number of clusters 1e-4 Number of clusters for K-Means algorithm 
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Table 6: Setting parameters in Autoencoder algorithm 

 
Results 

This option 1, "Daily every 15 min", shows four optimal numbers of clusters (see Table 2) as shown in Figure 38. 
Clusters 0, 2, and 3 have consumption throughout the day, in different ranges; while cluster 1 maintains a 
constant consumption, decreasing slightly in the middle of the day and subsequently increasing after 19:00. 
 

 

Figure 38: Result of option 1 “Daily”  

 

4.3.2 K-means 
K-means clustering (Garbade, 2018) (Munnelly, 2017) is an unsupervised learning algorithm, which makes 
inferences from the given dataset, using only input vectors. Its objective is to group elements that share similar 
characteristics and separate them from those that do not have these characteristics. 

Without entering much detail, K-means works as follows: prefixed the number of clusters (k) it randomly selects k 
centroids, as starting centroids, in the datasets. Every point, considering point as each user time series array, is 
allocated to a cluster based on its nearest centroid. Iteratively, the centroids are recomputed as the mean of all 
points assigned to their cluster until the recomputed performance reaches the optimal (i.e. centroids have 
stabilized and points no longer switch to different clusters). (Munnelly, 2017) 

Some advantage of using K-means algorithm are (Google Developers, 2020): 

- Scikit learn (Scikit learn, 2019) library includes k-means++ as method for initialization which tries to choose 
good starting clusters, theoretically yielding better results; 

- Scales to large data sets; 
- Guarantees convergence; 

 
However, K-means presents disadvantages (Google Developers, 2020):  

- due to the initial centroids are randomly selected they can provide different results each time it is executed 
because its operation is probabilistic; 

- number of clusters (k) must be given; 

- clustering outliers: centroids can be dragged by outliers, or outliers might get their own cluster instead of 
being ignored; reason for the importance of pre-processing; 
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- Scaling with the number of dimensions: As the number of dimensions rises, a distance-based similarity 
measure converges to a constant value between any given examples. PCA can be a good algorithm for 
reducing dimensionality (Google Developers, 2020) 

 

Setting parameters  

K-means algorithm is provided by Scikit-learn library (Scikit-learn, 2019) which parameters are set as shown in 
Table 7. 

Parameter Set with Description 

clusters 
options of 

section 4.2.2 
The number of clusters to form as well as the number of centroids 
to generate. 

Init ‘k-means++’ 
Method for initialization. ‘k-means++’: selects initial cluster centers 
for k-mean clustering in a smart way to speed up convergence. 

n_init 10 
Number of time the k-means algorithm will be run with different 
centroid seeds. The results will be the best output of n_init 
consecutive runs in terms of inertia. 

max_iter 300 
Maximum number of iterations of the k-means algorithm for a 
single run 

tol 1e-4 Relative tolerance with regards to inertia to declare convergence. 
precompute_distances ’auto’. Precompute distances (faster but takes more memory). 

random_state None 
Determines random number generation for centroid initialization. 
Use the global random state from numpy.random 

Table 7: Setting parameters in K-means algorithm 

 

Results 

The results of the optimal number of cluster with K-means algorithm for options from #2 to #9 of load profiling 
(Table 2) are represented in the images below. Figures 39 and 40 correspond respectively to options #2 and #3 for 
daily based profiles, figures 41 and 42 correspond to options #4 and #5 for weekly-based profiles and finally figures 
from 43 to 45 correspond respectively to option from #6 to #9 for seasonal profiles. Due to the representation of 
all the users by cluster would be difficult to visualize, it has been chosen to illustrate the average of every cluster, 
which basically corresponds to its cluster centroid in the considered timespan for each option. 

Results for option 10 cannot be represented by a graphic since it is only a 1-hour time slot, thus the value of the 
energy flexibility for each centroids’ clusters is provided. Finally, option 11 (the flexibility profiles clustered on a 
monthly base) is represented in Figure 47. 
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Option 2: Daily working days (Mon – Fri) 

 

Figure 39: Results for K-means optimal clusters of option 2 “Daily working days” 

This option displays five optimal clusters that are cyclically repeated along the week, all working days have the 
same consumption pattern: 

o Cluster 0: shows a peak in consumption during the morning, around 8: 00-12: 00 am, and a 
gradual decrease in the rest of the day; 

o Cluster 1: the consumption is divided into two strips, in the morning between 8:00 a.m. and 12:30 
p.m., and in the afternoon between 3:00 p.m. and 5:45 p.m.; 

o Cluster 2: shows a slight consumption in the morning that increases during the afternoon where 
there is a peak from 18:00 to 20:00; 

o Cluster 3: maintains a constant consumption throughout the day; 
o Cluster 4: unlike the previous ones, this cluster shows consumption only at night and constantly. 

 

 

• Option 3: Daily weekend days (Sat – Sun) 

 

Figure 40: Results for K-means optimal clusters of option 3 “Daily weekend days” 

Weekend´s consumption is divided into three clusters. 
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o Cluster 0: illustrates a consumption that begins in the afternoon and lasts overnight until early in 
the morning 

o Cluster 1: shows more consumption on Saturdays than Sundays, reaching almost the double. 
o Cluster 2: shows a slight consumption in the morning that increases during the afternoon where 

there is a peak from 18:00 to 20:00 

 

 

• Option 4: Weekly on hourly base (Mon – Sun) 

 

Figure 41: Results for K-means optimal clusters of option 4 “Weekly on hourly base” 

This option presents an optimal number of clusters equal to four. 

o Cluster 0: maintains a similar consumption except on Thursday, which decreases about a third 
o Cluster 1: follows a consumption´s pattern similar to cluster 0 but its decrease occurs on 

Wednesday and does not show consumption on Thursday 
o Cluster 2: presents a constant pattern throughout the week with consumption peaks during the 

night 
o Cluster 3: follows a similar pattern of weekly consumption similar to cluster 0, Thursday has an 

off-peak 

 

 

• Option 5: Weekly on daily base (Mon – Sun) 
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Figure 42: Results for K-means optimal clusters of option 5 “Weekly on daily base” 

 

This weekly option is the same as option 4 but on a daily basis. The choice of three optimal clusters 
agrees somewhat with the analysis carried out in option 4. 

o Cluster 0: presents a decrease in consumption for Wednesday reaching its off-peak on Thursday 
o Cluster 1: maintains a similar consumption during the week except for a peak on Wednesday and 

its gradual decrease during Thursday 
o Cluster 2: shows an inverse pattern to cluster 1, with a consumption off-peak on Thursday 

 

The following options depict the optimal number of clusters based on the consumption profile; how 
much energy is consumed by the prosumer. 
 

• Option 6: Summer months on daily base (Jun-Jul-Aug) 

 

Figure 43: Results for K-means optimal clusters of option 6 “Summer months on daily base” 

 
• Option 7: Fall months on daily base (Sep-Oct-Nov) 
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Figure 44: Results for K-means optimal clusters of option 7 “Fall months on daily base” 

 
• Option 8: Winter months on daily basis (Dec-Jan-Feb) 

 

Figure 45: Results for K-means optimal clusters of option 8 “Winter months on daily base” 

 

• Option 9: Spring months on daily basis (Mar-Apr-May) 

 

Figure 46: Results for K-means optimal clusters of option 9 “spring months on daily base” 

 
Summer is the only season that presents an optimal number of clusters equal to three; the rest obtain four clusters. 
Regardless of the number of clusters, a differentiation between prosumers is displayed in all figures; with 
prosumers who consume little, others with  medium consumption, and finally by large consumers. 
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Furthermore, Summer and Fall are the seasons with the most stable consumption; while Spring and Winter have 
outstanding peaks on specific days. 

 

• Option 10: Flexibility working days on daily base 

Option 10 represents the clustering of a specific date and hour of the flexibility profiles. As described in section 3, 
the “Electricity Consumption / Production Forecasting” module sends the flexibility values to be clustered. By 
choosing this option in the “Load Profiling” module it is possible to select a specific date and time for clustering 
the customers portfolio flexibility. Moreover, the “Load Profiling” can separate the positive flexibility (the capacity 
to increase the energy consumption with respect to the baseline) and the negative flexibility (the capacity to 
reduce the energy profile below the baseline) and cluster them separately. This scenario reflects the events where 
an aggregator needs to identify within its pool, a group of prosumers offering a given amount of flexibility for a 
specific timeslot. It is basically a simulation of a demand response request, where the aggregator must  evaluate 
the flexibility capacity of its portfolio. As an example, it has been simulated a request to be received by the 
following date and hour: 2019-02-01 14:00:00.  

Since the simulated request is for a specific hour, it is not possible to depict the results in a two-dimensional 
graphic, therefore the obtained clusters are characterized only for the energy flexibility value. For this specific time 
the down boundary of the flexibility (load reduction capacity) is null, so the positive one is the only available. 

Three Clusters have been obtained:  

Cluster 0 = 0,012 kWh 

Cluster 1 = 0,1496 kWh 

Cluster 2 = 0,8605 kWh 

 

• Option 11: Monthly Flexibility 

Option 11 clusters the flexibility profiles for an entire month. As in the previous options the “Load Profiling” module 
will provide the dataset organized ready to be clustered and it also gives the possibility to select which month to 
cluster. In the example shown in Figure 47 the month of February 2019 has been clustered and four different 
categories of profiles have been identified. 

 

Figure 47: Results of K-means optimal clusters for option 11 “monthly flexibility” 
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As in option 10, no negative flexibility values have been calculated, so the customers profiles only have positive 
flexibility for increasing their loads. Cluster 0 shows almost no flexibility, Cluster 1 has regular flexibility capacity in 
the daytime of working days, Cluster 2 shows irregular spikes along the whole month with a peak concentration in 
the final days, and Cluster 3 includes customers with poor flexibility capacity. 

 

4.3.3 DBSCAN  
Density-based Spatial Clustering of Applications with noise (DBSCAN) Algorithm 

DBSCAN (Ester, Kriegel, Sander, & Xu, 1996) belongs to the category of  unsupervised data mining techniques and 
more particulary to the category of density-based clustering, hence the name of the algorithm. Essentially, the 
algorithm groups various points together, that are close to each other (regions with high density), marking as 
outlier those points that appear alone in low-density regions. DBSCAN defines as clusters, groups of dense points. 
(eDREAM H2020 Project, 2019) 

 

Algorithm workflow 

As described in D4.2, given eps and minPoints categorize the objects into 3 exclusive groups. 

• A point is considered as a core point if the corresponded number of points within eps is greater than a 
predefined number of points (minPoints)-These are points that are at the interior of a cluster.  

• A border point has fewer than minPoints within eps but belongs to the neighborhood of a core point. 

• In addition, if there is a path 𝑝#, … , 𝑝$, where 𝑝# = 𝑐𝑜𝑟𝑒	𝑝𝑜𝑖𝑛𝑡 and 𝑝%&#  is directly reachable from 𝑝$  
results that 𝑝$  is a border point. 

• A noise point is any point that is not a core point nor a border point.  

As was described in Deliverable 4.2, each core point forms a cluster together with the points that are reachable 
within its eps radius. Two points are considered “directly density-reachable” if one of the points is a core point 
and the other point is within its ε radius. Larger clusters are formed when directly density-reachable points are 
chained together. (Wikipedia, 2020) 

 

Figure 48: Core, border points and outliers (Wikipedia, 2020) 

In Figure 48, the number of minPoints is set 4. Thus, point A is considered as a core point as within its area there 
are 4 points. B belongs to the neighborhood of core Point A and is considered as a border point, despite that fewer 
points are within its area. Last but not least, point N is an outlier. Neither is a neighbor of a core point, nor points 
are enough to form a core point. 
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Unlike some other clustering techniques, DBSCAN does not require all data points to be assigned to a cluster. The 
DBSCAN algorithm repeats the following process shown in Figure 49Figure 49 until all points have been assigned 
to a cluster or are labeled as visited. Some advantages of DBSCAN are: 

• The ability to discover clusters of arbitrary shapes (spherical, elongated, linear) and noise. 
• Working with spatial datasets. 
• There is no need to predefine the number of clusters. 

 

The minor disadvantage of DBSCAN is that it is sensitive to parameters.  

 

Figure 49: Process of clusterization with DBSCAN 

 

• Option 2: Daily working days (Mon – Fri) 
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Figure 50: Results for DBSCAN optimal clusters of option 2 “Daily working days” 

Figure 50 illustrates the results of the clustering process based on the energy consumption of working days 
(Monday-Friday). Each color line represents a different cluster showing the aggregated mean values of 15-minute 
time intervals of the prosumers that were classified into this cluster (different colors). It is evident that the 
prosumer dataset is separated into 5 clusters. 

 

• Option 3: Daily weekend days (Sat – Sun) 

 

Figure 51: Results for DBSCAN optimal clusters of option 3 “Daily weekend days” 

In Figure 51 two clusters are formed representing different behavior regarding the mean energy consumption of 

15-minute time intervals during weekends. 
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• Option 4: Weekly on hourly base (Mon – Sun) 

 

Figure 52: Results for DBSCAN optimal clusters of option 4 “Weekly on hourly base” 

Figure 52 shows the results of the clustering process in hourly time intervals representing the mean energy 
consumption throughout the whole week. Two clusters are formed and as it becomes clear, the second cluster 
(blue line) shows a significantly lower energy consumption during Wednesday and Thursday compared to the first 
cluster (purple line). 

 

• Option 5: Weekly on daily base (Mon – Sun) 

 

Figure 53: Results for DBSCAN optimal clusters of option 5 “Weekly on daily base” 

Figure 53 shows the daily average consumption during the week. Prosumers are grouped into 3 clusters. Cluster 1 
(yellow line) and cluster 2 (blue line) have an opposite energy behavior, while cluster 0 (purple line) presents a 
steady consumption throughout the week. 
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• Option 6: Summer months on daily base (Jun-Jul-Aug) 

 

Figure 54: Results for DBSCAN optimal clusters of option 6 “Summer months on daily base” 

 

• Option 7: Fall months on daily base (Sep-Oct-Nov) 

 

Figure 55: Results for DBSCAN optimal clusters of option 7 “Fall months on daily base” 

 

• Option 8: Winter months on daily basis (Dec-Jan-Feb) 
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Figure 56: Results for DBSCAN optimal clusters of option 8 “Winter months on daily base” 

 

• Option 9: Spring months on daily basis (Mar-Apr-May) 

 

Figure 57: Results for DBSCAN optimal clusters of option 9 “spring months on daily base” 

Figure 54, Figure 55, Figure 56 and Figure 57 illustrate the results of the clustering process on the daily average 
energy consumption in different seasonal periods (summer, winter, fall, spring). As it is evident in each of the 4 
figures, two clusters are formed with a significantly different characteristics in their energy consumption behavior. 
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5 Customer Segmentation 
Customer Segmentation module is the last module of the Big Data Layer, which objective is to identify the 
consumption pattern of a new prosumer and allocate it, with high accuracy, to the proper cluster previously 
obtained by the “Big Data Clustering at Multiple Scale” module. 

The first step in order to achieve the goal is to feed the neural network used by this module. A neural network is a 
type of deep learning algorithm, like a graph, that enables to recognize the underlying patterns in a given data set. 
This network is characterized by multiple layers of neurons connected to each other, where every layer extract 
characteristic from an increasingly higher level, combining relationships until reaching the answer. Deliverable D4.2 
describes in details the neural network technologies chosen for the Customer Segmentation module. 

Algorithm workflow 

Two main advantages of this module are its scalability (similarly to the Autoencoder, the more data the better) and 
its versatility. Training this type of algorithm requires much data, thus only the option 1 data set of load profiling 
provides this characteristic. This implies that the pattern of the new prosumer must fit the same length as the 
dataset used.  

The procedure for running this tool is described in the following steps: 

• The initial data set enters the neural network, through the input layer. This layer must be set with a number 
of neurons equal to the length of the data set, in this case 96 neurons, the length data of option 1 (see 
Table 1). 

• The information of the input layer neurons feeds the rest of the hidden layers, calculating the weights and 
processing in the activation function. 

• This process returns values that are sent to the output layer where they are compared to a target. The 
target values are the clusters obtained in the big data clusters module. 

• Batch size and epoch parameters determine how many times this process is repeated. Both parameters 
are critical to the performance of the algorithm. A misallocation can lead to an overfit or underfit.   

• Finalizing the iterations, an accuracy is achieved, being able to determine how precise will be the 
assignation a new prosumer to one cluster. 
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Figure 58: Neural networks topology 

 

Setting parameters  

As in the previous algorithms, Table 8 shows the parameters set for running the neural network 

Parameter Set with Description 

dims [1*, 2*, 3*, 4*] [length_data, 32, 16, 4] 
Dims is an array which contains the required 
parameter for the autoencoder (encoder-decoder) 
and k-means algorithm 

1*= input data shape 96 Length of data of option 1 
2*= first hidden layer 32 Number of nodes in the first hidden layer 
3*= second hidden layer 16 Number of nodes in the second hidden layer 
4*= number of clusters 4 Number of clusters for K-Means algorithm 

epoch 10 
One forward pass and one backward pass of all the 
training examples 

batch size 2048 
Number of training examples in one 
forward/backward pass. 

Table 8: Setting parameters in Neural Networks algorithm 

The algorithm training, for option 1, achieves an accuracy close to 0.98, as illustrated in Figure 59; allowing the 
inference of the consumption pattern of a new prosumer to be assigned to the correct cluster with a confidence 
of 98%. 
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Figure 59: Neural Networks training 

 

6 Conclusions  
This document is the second deliverable of task T4.2 “Big data clustering techniques for load profiling and customer 
segmentation” and describes the development of three of the modules of the eDREAM architecture: Load Profiling, 
Big Data Clustering at Multiple Scale and Customer Segmentation. These modules, together with the pre-
processing tool compose the Big Data Layer, a portion of the eDREAM architecture devoted to the analysis of large 
volume of data. All the development activities and the results presented in this deliverable are based on the 
methodology and the technologies previously described in deliverable D4.2, the first output of task T4.2. 

The Big Data Layer modules will be tested in the Italian pilot (at the ASM  site) and the dataset coming from the 
pilot is described. This dataset includes data from the smart meters of 542 final users for approximately 4 years 
(2015-2019) with a frequency sampling of 15 minutes. In the  first part of this deliverable the Big Data layer 
architecture is presented in its final version, with references to its stability and scalability properties. The 
connections among all modules have been reported in dedicated diagrams and explained even considering the 
following validation activities based on the use cases (use case 1.6 and 3.1 are the ones where these modules are 
going to be tested and validated). The results of unit tests have been also reported, with some screenshot showing 
the percentage of code coverage (higher than the 80%). Later on, the full documentation of the API has been 
included, in order to ensure full accessibility to other modules in the platform. In the last section of this first part, 
all the adopted technologies (starting from the ones selected in D4.2) have been listed and described. 

In the second part of the deliverable the development of the three modules together with the pre-processing tool 
is described. The pre-processing tool is necessary for preparing the data to be injected in Load Profiling. In most 
cases raw data from the field need to be cleaned and filtered because in their sampling and acquisition process 
many external factors can affect their integrity and veracity. The pilot dataset is characterized by many gaps, nulls, 
nans, etc, so it is mandatory to clean the data before extracting any information. All the different steps of the pre-
processing bring to a new dataset with 350 final users. Load Profiling is a tool aimed at organizing the data 
according to different options. Data received from pre-processing are basically timeseries organized on a daily base 
(each day of the four years includes a sequence of 96 measures of all prosumers). So, it is essential to re-structure 
the data matrix in something more useful for extracting insights. Eleven different options have been identified: 
each one of them organize the data of each customer in a different timing (daily, working days, season, etc.). The 
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first nine options are devoted to the management of historical data, while option 10 and 11 consider the flexibility 
data from the “Electricity Consumption/Generation Forecasting”. In this case a potential user of the eDREAM 
platform (aggregator, DSO, retailer, etc) can  extract information of its portfolio for real time applications (intraday 
and day-ahead services as described in other eDREAM documents) and for portfolio characterization (planing, 
tariff analysis and in general long-term and off-line operation). In addition to the organization of data with different 
eleven options, Load Profiling feeds the Big Data Clustering at multiple Scale module, that is able to cluster the 
ASM portfolio according to these eleven features. Three different algorithms have been included in this module: 
Autoencoder, K-means and DBScan. Since the eleven features of Load Profiling can produce dataset with different 
dimensions and characteristics, each one of the three algorithms can be activated in different conditions. 
Autoencoder is a deep learning technique that works better with large volumes of data. Tests on the Italian pilot 
have shown a good level of performance with a dataset greater than half million points, which  is choosing 
feature#1 for ASM dataset). K-means and DBScan can be activated with the rest of the features, but they have 
different peculiarities. K-means is a general purpose technique that show good scalability, it is fast enough (good 
applicability to short-response applications like intraday market services) , but it needs an optimal value of clusters 
previously calculated (see Table 3). On the other hand DBScan needs no pre-calculated optimal number of clusters, 
it is pretty numb to outliers, but it requires a couple of parameters to be set (see Table 4). With the three algorithms 
combined, the whole tool features great scalability for the most of Big Data applications and enough flexibility to 
be applied to different portfolios. Even the optimal number of clusters has been figured out with a script combining 
several evaluation indexes (see section 4.2). Graphic results have been depicted for the three algorithms. 

Finally, the Customer Segmentation tool  features a neural network algorithm able to identify a new or random 
customer profile with the cluster previously calculated. Therefore, new customers and prosumers can be added to 
an existing portfolio and can be characterized to pre-existent clusters. The new customer profile should be by 96 
points data string (according to the structure of the Italian pilot time series). The tool is able to match the customer 
profile with the profile of a cluster that is the best fit.; The accuracy of this matching is provided in percentage 
(maximum accuracy of 98% has been obtained). Therefore, it can be very helpful when new customers and 
prosumers are added to an existing portfolio and they are segmented according to pre-existent clusters. On the 
other hand, some customers already included in the clustering process, can be moved from a cluster to another 
and check how they fit with the new segment.  
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